-
Notifications
You must be signed in to change notification settings - Fork 32
/
timeseries.py
745 lines (584 loc) · 20.6 KB
/
timeseries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
'''
A class that deals with time series of one variable.
Written by R. Jolivet, April 2013.
'''
import numpy as np
import pyproj as pp
import datetime as dt
import matplotlib.pyplot as plt
import scipy.interpolate as sciint
import sys
# Personal
from .functionfit import functionfit
from .tidalfit import tidalfit
from .SourceInv import SourceInv
class timeseries(SourceInv):
'''
A class that handles generic time series
Args:
* name : Name of the dataset.
Kwargs:
* utmzone : UTM zone (optional, default=None)
* lon0 : Longitude of the center of the UTM zone
* lat0 : Latitude of the center of the UTM zone
* ellps : ellipsoid (optional, default='WGS84')
* verbose : Talk to me
'''
def __init__(self, name, utmzone=None, verbose=True, lon0=None, lat0=None, ellps='WGS84'):
# base class ini
super(timeseries, self).__init__(name,
utmzone=utmzone,
lon0=lon0, lat0=lat0,
ellps=ellps)
# Set things
self.name = name
self.dtype = 'timeseries'
# print
if verbose:
print ("---------------------------------")
print ("---------------------------------")
print ("Initialize Time Series {}".format(self.name))
self.verbose = verbose
# All done
return
def initialize(self, time=None, start=None, end=None, increment=1):
'''
Initialize the time series.
Kwargs:
* time : list of datetime instances
* start : datetime instance of the first period
* end : datetime instance of the ending period
* increment : increment of time between periods
Returns:
* None
'''
# check start and end
if (start.__class__ is float) or (start.__class__ is int) :
st = dt.datetime(start, 1, 1)
if (start.__class__ is list):
if len(start) == 1:
st = dt.datetime(start[0], 1, 1)
elif len(start) == 2:
st = dt.datetime(start[0], start[1], 1)
elif len(start) == 3:
st = dt.datetime(start[0], start[1], start[2])
elif len(start) == 4:
st = dt.datetime(start[0], start[1], start[2],
start[3])
elif len(start) == 5:
st = dt.datetime(start[0], start[1], start[2],
start[3], start[4])
elif len(start) == 6:
st = dt.datetime(start[0], start[1], start[2],
start[3], start[4], start[5])
if start.__class__ is dt.datetime:
st = start
if (end.__class__ is float) or (end.__class__ is int) :
ed = dt.datetime(int(end), 1, 1)
if (end.__class__ is list):
if len(end) == 1:
ed = dt.datetime(end[0], 1, 1)
elif len(end) == 2:
ed = dt.datetime(end[0], end[1], 1)
elif len(end) == 3:
ed = dt.datetime(end[0], end[1], end[2])
elif len(end) == 4:
ed = dt.datetime(end[0], end[1], end[2], end[3])
elif len(end) == 5:
ed = dt.datetime(end[0], end[1], end[2], end[3], end[4])
elif len(end) == 6:
ed = dt.datetime(end[0], end[1], end[2], end[3], end[4], end[5])
if end.__class__ is dt.datetime:
ed = end
# Initialize a time vector
if end is not None:
delta = ed - st
delta_sec = int(np.floor(delta.days * 24 * 60 * 60 + delta.seconds))
time_step = int(np.floor(increment * 24 * 60 * 60))
self.time = [st + dt.timedelta(0, t) \
for t in range(0, delta_sec, time_step)]
if time is not None:
self.time = time
# Values and errors
self.value = np.zeros((len(self.time),))
self.error = np.zeros((len(self.time),))
self.synth = None
# All done
return
def readAscii(self, infile, header=0):
'''
Reads from an ascii file. Format of the file is
+------+-------+-----+------+-----+--------+-------+----------------+
| year | month | day | hour | min | second | value | err (optional) |
+------+-------+-----+------+-----+--------+-------+----------------+
Args:
* infile : Input file (ascii)
Kwargs:
* header : length of the file header
Returns:
* None
'''
# Read file
fin = open(infile, 'r')
Lines = fin.readlines()
fin.close()
# Initialize things
time = []
value = []
error = []
# Loop
for i in range(header, len(Lines)):
tmp = Lines[i].split()
yr = int(tmp[0])
mo = int(tmp[1])
da = int(tmp[2])
hr = int(tmp[3])
mi = int(tmp[4])
sd = int(tmp[5])
time.append(dt.datetime(yr, mo, da, hr, mi, sd))
value.append(float(tmp[6]))
if len(tmp)>7:
error.append(float(tmp[7]))
else:
error.append(0.0)
# arrays
self.time = time
self.value = np.array(value)
self.error = np.array(error)
# Sort
self.SortInTime()
# All done
return
def checkNaNs(self):
'''
Returns the index of NaNs
Returns:
* numpy array of integers
'''
# All done
return np.flatnonzero(np.isnan(self.value))
def removePoints(self, indexes):
'''
Removes the points from the time series
Args:
* indexes: Indexes of the poitns to remove
Returns:
* None
'''
self.value = np.delete(self.value, indexes)
self.error = np.delete(self.error, indexes)
self.time = np.delete(np.array(self.time), indexes).tolist()
# All done
return
def SortInTime(self):
'''
Sort ascending in time.
Returns:
* None
'''
# argsort
u = np.argsort(self.time)
# Sort
self.time = [self.time[i] for i in u]
self.value = self.value[u]
self.error = self.error[u]
# All done
return
def trimTime(self, start, end=dt.datetime(2100, 1, 1)):
'''
Keeps the data between start and end. start and end are 2 datetime.datetime objects.
Args:
* start : datetime.datetime object
Kwargs:
* end : datetime.datetime object
Returns:
* None
'''
# Assert
assert type(start) is dt.datetime, 'Starting date must be datetime.datetime instance'
assert type(end) is dt.datetime, 'Ending date must be datetime.datetime instance'
# Get indexes
u1 = np.flatnonzero(np.array(self.time)>=start)
u2 = np.flatnonzero(np.array(self.time)<=end)
u = np.intersect1d(u1, u2)
# Keep'em
self._keepDates(u)
# All done
return
def adddata(self, time, values=None, std=None):
'''
Augments the time series
Args:
* time : list of datetime objects
Kwargs:
* values : list array or None
* std : list array or None
Returns:
* None
'''
# List
if type(time) is not list:
time = list(time)
# Check
if values is not None:
assert len(time)==len(values), 'Values size inconsistent: {}/{}'.format(len(time), len(values))
else:
values = np.zeros((len(time),))
if std is not None:
assert len(time)==len(values), 'Std size inconsistent: {}/{}'.format(len(time), len(std))
else:
std = np.zeros((len(time),))
# Augment
self.time += time
self.values = np.append(self.values, values)
self.std = np.append(self.std, std)
# Sort
self.SortInTime()
# All done
return
def addPointInTime(self, time, value=0.0, std=0.0):
'''
Augments the time series by one point.
Args:
* time : datetime.datetime object
Kwargs:
* value : Value of the time series at time {time}
* std : Uncertainty at time {time}
'''
# Find the index
u = 0
t = self.time[u]
while t<time and u<len(self.time):
t = self.time[u]
u += 1
# insert
self.time.insert(u, time)
self.value = np.insert(self.value, u, value)
self.error = np.insert(self.error, u, std)
# All done
return
def computeDoubleDifference(self):
'''
Compute the derivative of the TS with a central difference scheme.
Returns:
* None. Results is stored in self.derivative
'''
# Get arrays
up = self.value[2:]
do = self.value[:-2]
tup = self.time[2:]
tdo = self.time[:-2]
# Compute
self.derivative = np.zeros((len(self.time),))
timedelta = np.array([(tu-td).total_seconds() for tu,td in zip(tup, tdo)])
self.derivative[1:-1] = (up - do)/timedelta
# First and last
self.derivative[0] = (self.value[1] - self.value[0])/(self.time[1] - self.time[0]).total_seconds()
self.derivative[-1] = (self.value[-2] - self.value[-1])/(self.time[-2] - self.time[-1]).total_seconds()
# All Done
return
def smoothGlitches(self, biggerThan=999999., smallerThan=-999999., interpNum=5, interpolation='linear'):
'''
Removes the glitches and replace them by a value interpolated on interpNum points.
Kwargs:
* biggerThan : Values higher than biggerThan are glitches.
* smallerThan : Values smaller than smallerThan are glitches.
* interpNum : Number of points to take before and after the glicth to predict its values.
* interpolation : Interpolation method.
Returns:
* None
'''
# Find glitches
u = np.flatnonzero(self.value>biggerThan)
d = np.flatnonzero(self.value<smallerThan)
g = np.union1d(u,d).tolist()
# Loop on glitches
while len(g)>0:
# Get index
iG = g.pop()
# List
iGs = [iG]
# Check next ones
go = False
if len(g)>0:
if (iG-g[-1]<interpNum):
go = True
while go:
iG = g.pop()
iGs.append(iG)
go = False
if len(g)>0:
if (iG-g[-1]<interpNum):
go = True
# Sort
iGs.sort()
# Make a list of index to use for interpolation
iMin = max(0, iGs[0]-interpNum)
iMax = min(iGs[-1]+interpNum+1, self.value.shape[0])
iIntTmp = range(iMin, iMax)
iInt = []
for i in iIntTmp:
if i not in iGs:
iInt.append(i)
iInt.sort()
# Build the interpolator
time = np.array([(self.time[t]-self.time[iInt[0]]).total_seconds() for t in iInt])
value = np.array([self.value[t] for t in iInt])
interp = sciint.interp1d(np.array(time), self.value[iInt], kind=interpolation)
# Interpolate
self.value[iGs] = np.array([interp((self.time[t]-self.time[iInt[0]]).total_seconds()) for t in iGs])
# All done
return
def removeMean(self, start=None, end=None):
'''
Removes the mean between start and end.
Kwargs:
* start : datetime.datetime object. If None, takes the first point of the time series
* end : datetime.datetime object. If None, takes the last point of the time series
Returns:
* None. Attribute {value} is directly modified.
'''
# Start end
if start is None:
start = self.time[0]
if end is None:
end = self.time[-1]
# Get index
u1 = np.flatnonzero(np.array(self.time)>=start)
u2 = np.flatnonzero(np.array(self.time)<=end)
u = np.intersect1d(u1, u2)
# Get Mean
mean = np.nanmean(self.value[u])
# Correct
self.value -= mean
# All Done
return
def fitFunction(self, function, m0, solver='L-BFGS-B', iteration=1000, tol=1e-8):
'''
Fits a function to the timeseries
Args:
* function : Prediction function,
* m0 : Initial model
Kwargs:
* solver : Solver type (see list of solver in scipy.optimize.minimize)
* iteration : Number of iteration for the solver
* tol : Tolerance
Returns:
* None. Model vector is stored in the {m} attribute
'''
# Do the fit
fit = functionfit(function, verbose=self.verbose)
fit.doFit(self, m0, solver=solver, iteration=iteration, tol=tol)
# Do the prediction
fit.predict(self)
# Save
self.m = fit.m
# All done
return
def fitTidalConstituents(self, steps=None, linear=False, tZero=dt.datetime(2000, 1, 1), chunks=None, cossin=False, constituents='all'):
'''
Fits tidal constituents on the time series.
Kwargs:
* steps : list of datetime instances to add step functions in the estimation process.
* linear : estimate a linear trend.
* tZero : origin time (datetime instance).
* chunks : List [ [start1, end1], [start2, end2]] where the fit is performed.
* cossin : Add a cosine+sine term in the procedure.
* constituents : list of tidal constituents to include (default is all). For a list, go check tidalfit class
Returns:
* None
'''
# Initialize a tidalfit
tf = tidalfit(constituents=constituents, linear=linear, steps=steps, cossin=cossin)
# Fit the constituents
tf.doFit(self, tZero=tZero, chunks=chunks)
# Predict the time series
if steps is not None:
sT = True
else:
sT = False
tf.predict(self,constituents=constituents, linear=linear, steps=sT, cossin=cossin)
# All done
return
def getOffset(self, date1, date2, nodate=np.nan, data='data'):
'''
Get the offset between date1 and date2.
Args:
* date1 : datetime object
* date2 : datetime object
Kwargs:
* nodate : Value to be returned in case no value is available
* data : can be 'data' or 'std'
Returns:
* float
'''
# Get the indexes
u1 = np.flatnonzero(np.array(self.time)==date1)
u2 = np.flatnonzero(np.array(self.time)==date2)
# Check
if len(u1)==0:
return nodate, nodate, nodate
if len(u2)==0:
return nodate, nodate, nodate
# Select
if data in ('data'):
value = self.value
elif data in ('std'):
value = self.error
# all done
return value[u2] - value[u1]
def write2file(self, outfile, steplike=False):
'''
Writes the time series to a file.
Args:
* outfile : output file.
Kwargs:
* steplike : doubles the output each time so that the plot looks like steps.
Returns:
* None
'''
# Open the file
fout = open(outfile, 'w')
fout.write('# Time | value | std \n')
# Loop over the dates
for i in range(len(self.time)-1):
t = self.time[i].isoformat()
e = self.value[i]
es = self.std[i]
fout.write('{} {} {} \n'.format(t, e, es))
if steplike:
e = self.value[i+1]
es = self.std[i+1]
fout.write('{} {} {} \n'.format(t, e, es))
t = self.time[i].isoformat()
e = self.value[i]
es = self.std[i]
fout.write('{} {} {} \n'.format(t, e, es))
# Done
fout.close()
# All done
return
def findZeroIntersect(self, data='data'):
'''
Returns all the points just before the function crosses 0.
Kwargs:
* data : Can be 'data', 'synth' or 'derivative'.
Returns:
* None
'''
# Get the good data
if data=='data':
v = self.value
elif data=='synth':
v = self.synth
elif data=='derivative':
v = self.derivative
# List
indexes = []
# Loop
for i in xrange(len(v)-1):
if (v[i]>0. and v[i+1]<0.) or (v[i]<0. and v[i+1]>0.):
indexes.append(i)
# All done
return indexes
def plot(self, figure=1, styles=['.r'], show=True, data='data', subplot=None):
'''
Plots the time series.
Args:
* figure : Figure id number (default=1)
* styles : List of styles (default=['.r'])
* show : Show to me (default=True)
* data : can be 'data', 'derivative', 'synth' or a list of those
* subplot : axes instance to be used for plotting. If None, creates a new one
Returns:
* None
'''
# Get values
if type(data) is str:
data = [data]
# iterate
values = []
for d in data:
if d in ('data'):
v = self.value
elif d in ('derivative'):
v = self.derivative
elif d in ('synth'):
v = self.synth
elif d in ('res'):
v = self.value-self.synth
else:
print('Unknown component to plot')
return
values.append(v)
# Create a figure
if (figure=='new') or type(figure) is int:
fig = plt.figure(figure)
else:
fig = figure
# Create axes
if subplot is not None:
ax = subplot
else:
ax = fig.add_subplot(111)
# Plot ts
for v,style in zip(values, styles):
u = np.argsort(self.time)
ax.plot(np.array(self.time)[u], np.array(v)[u], style)
# show
if show:
plt.show()
# All done
return
def reference2timeseries(self, timeseries):
'''
Removes to another gps timeseries the difference between self and timeseries
Args:
* timeseries : Another timeseries
Returns:
* float
'''
# Mean
difference = 0.
elements = 0
# Find the common dates and compute the difference
for d, date in enumerate(self.time):
val = timeseries.value[timeseries.time.index(date)]
assert len(val)<=1, 'Multiple dates for a measurement'
if len(val)>0:
diff = self.value[d] - val
if np.isfinite(diff):
difference += self.value[d] - val
elements += 1
# Average the difference
if elements>0:
difference /= float(elements)
# Remove the difference to the values
timeseries.value += difference
# All done
return difference
#PRIVATE EMTHODS
def _keepDates(self, u):
'''
Keeps the dates corresponding to index u.
'''
self.time = [self.time[i] for i in u]
self.value = self.value[u]
self.error = self.error[u]
if hasattr(self, 'synth') and self.synth is not None:
self.synth = self.synth[u]
# All done
return
def _deleteDates(self, u):
'''
Remove the dates corresponding to index u.
'''
# Delete stuff
self.time = np.delete(np.array(self.time), u).tolist()
self.value = np.delete(self.value, u)
self.error = np.delete(self.error, u)
if hasattr(self, 'synth'):
self.synth = np.delete(self.synth, u)
# All done
return
#EOF