Latest Release | |
Docs | |
Build | |
Coverage | |
Quality | |
License |
Bloomberg data toolkit for humans
-
Bloomberg C++ SDK version 3.12.1 or higher:
-
Downlaod C++ Experimental Release
-
Copy
blpapi3_32.dll
andblpapi3_64.dll
underbin
folder to BloombergBLPAPI_ROOT
folder, normallyblp/DAPI
-
Bloomberg Open API (need to install manually as shown below)
-
pdbdp - pandas wrapper for Bloomberg Open API
-
numpy, pandas, ruamel.yaml and pyarrow
pip install blpapi --index-url=https://bloomberg.bintray.com/pip/simple
pip install xbbg
0.1.22 - Remove PyYAML dependency due to security vulnerability
0.1.17 - Add adjust
argument in bdh
for easier dividend / split adjustments
In[1]: from xbbg import blp
BDP
example:
In[2]: blp.bdp(tickers='NVDA US Equity', flds=['Security_Name', 'GICS_Sector_Name'])
Out[2]:
security_name gics_sector_name
ticker
NVDA US Equity NVIDIA Corp Information Technology
BDP
with overrides:
In[3]: blp.bdp('AAPL US Equity', 'Eqy_Weighted_Avg_Px', VWAP_Dt='20181224')
Out[3]:
eqy_weighted_avg_px
ticker
AAPL US Equity 148.75
BDH
example:
In[4]: blp.bdh(
...: tickers='SPX Index', flds=['high', 'low', 'last_price'],
...: start_date='2018-10-10', end_date='2018-10-20',
...: )
Out[4]:
ticker SPX Index
field high low last_price
2018-10-10 2,874.02 2,784.86 2,785.68
2018-10-11 2,795.14 2,710.51 2,728.37
2018-10-12 2,775.77 2,729.44 2,767.13
2018-10-15 2,775.99 2,749.03 2,750.79
2018-10-16 2,813.46 2,766.91 2,809.92
2018-10-17 2,816.94 2,781.81 2,809.21
2018-10-18 2,806.04 2,755.18 2,768.78
2018-10-19 2,797.77 2,760.27 2,767.78
BDH
example with Excel compatible inputs:
In[4]: blp.bdh(
...: tickers='SHCOMP Index', flds=['high', 'low', 'last_price'],
...: start_date='2018-09-26', end_date='2018-10-20',
...: Per='W', Fill='P', Days='A',
...: )
Out[4]:
ticker SHCOMP Index
field high low last_price
2018-09-28 2,827.34 2,771.16 2,821.35
2018-10-05 2,827.34 2,771.16 2,821.35
2018-10-12 2,771.94 2,536.66 2,606.91
2018-10-19 2,611.97 2,449.20 2,550.47
BDH
without adjustment for dividends and splits:
In[5]: blp.bdh(
...: 'AAPL US Equity', 'px_last', '20140605', '20140610',
...: CshAdjNormal=False, CshAdjAbnormal=False, CapChg=False
...: )
Out[5]:
ticker AAPL US Equity
field px_last
2014-06-05 647.35
2014-06-06 645.57
2014-06-09 93.70
2014-06-10 94.25
BDH
adjusted for dividends and splits:
In[6]: blp.bdh(
...: 'AAPL US Equity', 'px_last', '20140605', '20140610',
...: CshAdjNormal=True, CshAdjAbnormal=True, CapChg=True
...: )
Out[6]:
ticker AAPL US Equity
field px_last
2014-06-05 85.45
2014-06-06 85.22
2014-06-09 86.58
2014-06-10 87.09
BDS
example:
In[7]: blp.bds('AAPL US Equity', 'DVD_Hist_All', DVD_Start_Dt='20180101', DVD_End_Dt='20180531')
Out[7]:
declared_date ex_date record_date payable_date dividend_amount dividend_frequency dividend_type
ticker
AAPL US Equity 2018-05-01 2018-05-11 2018-05-14 2018-05-17 0.73 Quarter Regular Cash
AAPL US Equity 2018-02-01 2018-02-09 2018-02-12 2018-02-15 0.63 Quarter Regular Cash
- Intraday bars
BDIB
example:
In[8]: blp.bdib(ticker='BHP AU Equity', dt='2018-10-17').tail()
Out[8]:
ticker BHP AU Equity
field open high low close volume num_trds
2018-10-17 15:56:00+11:00 33.62 33.65 33.62 33.64 16660 126
2018-10-17 15:57:00+11:00 33.65 33.65 33.63 33.64 13875 156
2018-10-17 15:58:00+11:00 33.64 33.65 33.62 33.63 16244 159
2018-10-17 15:59:00+11:00 33.63 33.63 33.61 33.62 16507 167
2018-10-17 16:10:00+11:00 33.66 33.66 33.66 33.66 1115523 216
Above example works because 1) AU
in equity ticker is mapped to EquityAustralia
in
markets/assets.yml
, and 2) EquityAustralia
is defined in markets/exch.yml
.
To add new mappings, define BBG_ROOT
in sys path and add assets.yml
and
exch.yml
under BBG_ROOT/markets
.
- Intraday bars within market session:
In[9]: blp.intraday(ticker='7974 JT Equity', dt='2018-10-17', session='am_open_30').tail()
Out[9]:
ticker 7974 JT Equity
field open high low close volume num_trds
2018-10-17 09:27:00+09:00 39,970.00 40,020.00 39,970.00 39,990.00 10800 44
2018-10-17 09:28:00+09:00 39,990.00 40,020.00 39,980.00 39,980.00 6300 33
2018-10-17 09:29:00+09:00 39,970.00 40,000.00 39,960.00 39,970.00 3300 21
2018-10-17 09:30:00+09:00 39,960.00 40,010.00 39,950.00 40,000.00 3100 19
2018-10-17 09:31:00+09:00 39,990.00 40,000.00 39,980.00 39,990.00 2000 15
- Corporate earnings:
In[10]: blp.earning('AMD US Equity', by='Geo', Eqy_Fund_Year=2017, Number_Of_Periods=1)
Out[10]:
level fy2017 fy2017_pct
Asia-Pacific 1.00 3,540.00 66.43
China 2.00 1,747.00 49.35
Japan 2.00 1,242.00 35.08
Singapore 2.00 551.00 15.56
United States 1.00 1,364.00 25.60
Europe 1.00 263.00 4.94
Other Countries 1.00 162.00 3.04
- Dividends:
In[11]: blp.dividend(['C US Equity', 'MS US Equity'], start_date='2018-01-01', end_date='2018-05-01')
Out[11]:
dec_date ex_date rec_date pay_date dvd_amt dvd_freq dvd_type
ticker
C US Equity 2018-01-18 2018-02-02 2018-02-05 2018-02-23 0.32 Quarter Regular Cash
MS US Equity 2018-04-18 2018-04-27 2018-04-30 2018-05-15 0.25 Quarter Regular Cash
MS US Equity 2018-01-18 2018-01-30 2018-01-31 2018-02-15 0.25 Quarter Regular Cash
New in 0.1.17 - Dividend adjustment can be simplified to one parameter adjust
:
BDH
without adjustment for dividends and splits:
In[12]: blp.bdh('AAPL US Equity', 'px_last', '20140606', '20140609', adjust='-')
Out[12]:
ticker AAPL US Equity
field px_last
2014-06-06 645.57
2014-06-09 93.70
BDH
adjusted for dividends and splits:
In[13]: blp.bdh('AAPL US Equity', 'px_last', '20140606', '20140609', adjust='all')
Out[13]:
ticker AAPL US Equity
field px_last
2014-06-06 85.22
2014-06-09 86.58
This library uses a global Bloomberg connection on the backend -
more specically, _xcon_
in globals()
variable.
Since initiation of connections takes time, if multiple queries are expected,
manual creation of a new connection (which will be shared by all following queries)
is helpful before calling any queries.
- In command line, below command is helpful:
from xbbg import blp
blp.create_connection()
- For functions, wrapper function is recommended (connections will be destroyed afterwards):
from xbbg import blp
@blp.with_bloomberg
def query_bbg():
"""
All queries share the same connection
"""
blp.bdp(...)
blp.bdh(...)
blp.bdib(...)
If BBG_ROOT
is provided in os.environ
, data can be saved locally.
By default, local storage is preferred than Bloomberg for all queries.
Noted that local data usage must be compliant with Bloomberg Datafeed Addendum
(full description in DAPI<GO>
):
To access Bloomberg data via the API (and use that data in Microsoft Excel), your company must sign the 'Datafeed Addendum' to the Bloomberg Agreement. This legally binding contract describes the terms and conditions of your use of the data and information available via the API (the "Data"). The most fundamental requirement regarding your use of Data is that it cannot leave the local PC you use to access the BLOOMBERG PROFESSIONAL service.