-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathHungarianAlgorithm-MinCost-Maximal-Matching.java
297 lines (284 loc) · 9 KB
/
HungarianAlgorithm-MinCost-Maximal-Matching.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
/* package whatever; // don't place package name! */
import java.util.*;
import java.lang.*;
import java.io.*;
import java.util.Arrays;
// (Min Cost Maximal Matching : HungarianAlgorithm , to solve max cost maximal
// matching you can change the cost matrix mat[i][j] = K - mat[i][j] or mat[i][j] = -mat[i][j]
class A
{
public static void main (String[] args) throws java.lang.Exception
{
// The Cost Matrix
double mat[][] = {
{2, 1, 3},
{1, 0, 2},
{1, 2, 1},
{3, 1, 2}
};
HungarianAlgorithm hn = new HungarianAlgorithm(mat);
int res[] = hn.execute();
for(int i = 0; i < res.length; i++){
System.out.print("worker "+i+" assigned to complete job "+res[i]+"\n");
}
}
}
class HungarianAlgorithm {
public final double[][] costMatrix;
public final int rows, cols, dim;
public final double[] labelByWorker, labelByJob;
public final int[] minSlackWorkerByJob;
public final double[] minSlackValueByJob;
public final int[] matchJobByWorker, matchWorkerByJob;
public final int[] parentWorkerByCommittedJob;
public final boolean[] committedWorkers;
/**
* Construct an instance of the algorithm.
*
* @param costMatrix
* the cost matrix, where matrix[i][j] holds the cost of assigning
* worker i to job j, for all i, j. The cost matrix must not be
* irregular in the sense that all rows must be the same length; in
* addition, all entries must be non-infinite numbers.
*/
public HungarianAlgorithm(double[][] costMatrix) {
this.dim = Math.max(costMatrix.length, costMatrix[0].length);
this.rows = costMatrix.length;
this.cols = costMatrix[0].length;
this.costMatrix = new double[this.dim][this.dim];
for (int w = 0; w < this.dim; w++) {
if (w < costMatrix.length) {
if (costMatrix[w].length != this.cols) {
throw new IllegalArgumentException("Irregular cost matrix");
}
for (int j = 0; j < this.cols; j++) {
if (Double.isInfinite(costMatrix[w][j])) {
throw new IllegalArgumentException("Infinite cost");
}
if (Double.isNaN(costMatrix[w][j])) {
throw new IllegalArgumentException("NaN cost");
}
}
this.costMatrix[w] = Arrays.copyOf(costMatrix[w], this.dim);
} else {
this.costMatrix[w] = new double[this.dim];
}
}
labelByWorker = new double[this.dim];
labelByJob = new double[this.dim];
minSlackWorkerByJob = new int[this.dim];
minSlackValueByJob = new double[this.dim];
committedWorkers = new boolean[this.dim];
parentWorkerByCommittedJob = new int[this.dim];
matchJobByWorker = new int[this.dim];
Arrays.fill(matchJobByWorker, -1);
matchWorkerByJob = new int[this.dim];
Arrays.fill(matchWorkerByJob, -1);
}
/**
* Compute an initial feasible solution by assigning zero labels to the
* workers and by assigning to each job a label equal to the minimum cost
* among its incident edges.
*/
protected void computeInitialFeasibleSolution() {
for (int j = 0; j < dim; j++) {
labelByJob[j] = Double.POSITIVE_INFINITY;
}
for (int w = 0; w < dim; w++) {
for (int j = 0; j < dim; j++) {
if (costMatrix[w][j] < labelByJob[j]) {
labelByJob[j] = costMatrix[w][j];
}
}
}
}
/**
* Execute the algorithm.
*
* @return the minimum cost matching of workers to jobs based upon the
* provided cost matrix. A matching value of -1 indicates that the
* corresponding worker is unassigned.
*/
public int[] execute() {
/*
* Heuristics to improve performance: Reduce rows and columns by their
* smallest element, compute an initial non-zero dual feasible solution and
* create a greedy matching from workers to jobs of the cost matrix.
*/
reduce();
computeInitialFeasibleSolution();
greedyMatch();
int w = fetchUnmatchedWorker();
while (w < dim) {
initializePhase(w);
executePhase();
w = fetchUnmatchedWorker();
}
int[] result = Arrays.copyOf(matchJobByWorker, rows);
for (w = 0; w < result.length; w++) {
if (result[w] >= cols) {
result[w] = -1;
}
}
return result;
}
protected void executePhase() {
while (true) {
int minSlackWorker = -1, minSlackJob = -1;
double minSlackValue = Double.POSITIVE_INFINITY;
for (int j = 0; j < dim; j++) {
if (parentWorkerByCommittedJob[j] == -1) {
if (minSlackValueByJob[j] < minSlackValue) {
minSlackValue = minSlackValueByJob[j];
minSlackWorker = minSlackWorkerByJob[j];
minSlackJob = j;
}
}
}
if (minSlackValue > 0) {
updateLabeling(minSlackValue);
}
parentWorkerByCommittedJob[minSlackJob] = minSlackWorker;
if (matchWorkerByJob[minSlackJob] == -1) {
/*
* An augmenting path has been found.
*/
int committedJob = minSlackJob;
int parentWorker = parentWorkerByCommittedJob[committedJob];
while (true) {
int temp = matchJobByWorker[parentWorker];
match(parentWorker, committedJob);
committedJob = temp;
if (committedJob == -1) {
break;
}
parentWorker = parentWorkerByCommittedJob[committedJob];
}
return;
} else {
/*
* Update slack values since we increased the size of the committed
* workers set.
*/
int worker = matchWorkerByJob[minSlackJob];
committedWorkers[worker] = true;
for (int j = 0; j < dim; j++) {
if (parentWorkerByCommittedJob[j] == -1) {
double slack = costMatrix[worker][j] - labelByWorker[worker]
- labelByJob[j];
if (minSlackValueByJob[j] > slack) {
minSlackValueByJob[j] = slack;
minSlackWorkerByJob[j] = worker;
}
}
}
}
}
}
/**
*
* @return the first unmatched worker or {@link #dim} if none.
*/
protected int fetchUnmatchedWorker() {
int w;
for (w = 0; w < dim; w++) {
if (matchJobByWorker[w] == -1) {
break;
}
}
return w;
}
/**
* Find a valid matching by greedily selecting among zero-cost matchings. This
* is a heuristic to jump-start the augmentation algorithm.
*/
protected void greedyMatch() {
for (int w = 0; w < dim; w++) {
for (int j = 0; j < dim; j++) {
if (matchJobByWorker[w] == -1 && matchWorkerByJob[j] == -1
&& costMatrix[w][j] - labelByWorker[w] - labelByJob[j] == 0) {
match(w, j);
}
}
}
}
/**
* Initialize the next phase of the algorithm by clearing the committed
* workers and jobs sets and by initializing the slack arrays to the values
* corresponding to the specified root worker.
*
* @param w
* the worker at which to root the next phase.
*/
protected void initializePhase(int w) {
Arrays.fill(committedWorkers, false);
Arrays.fill(parentWorkerByCommittedJob, -1);
committedWorkers[w] = true;
for (int j = 0; j < dim; j++) {
minSlackValueByJob[j] = costMatrix[w][j] - labelByWorker[w]
- labelByJob[j];
minSlackWorkerByJob[j] = w;
}
}
/**
* Helper method to record a matching between worker w and job j.
*/
protected void match(int w, int j) {
matchJobByWorker[w] = j;
matchWorkerByJob[j] = w;
}
/**
* Reduce the cost matrix by subtracting the smallest element of each row from
* all elements of the row as well as the smallest element of each column from
* all elements of the column. Note that an optimal assignment for a reduced
* cost matrix is optimal for the original cost matrix.
*/
protected void reduce() {
for (int w = 0; w < dim; w++) {
double min = Double.POSITIVE_INFINITY;
for (int j = 0; j < dim; j++) {
if (costMatrix[w][j] < min) {
min = costMatrix[w][j];
}
}
for (int j = 0; j < dim; j++) {
costMatrix[w][j] -= min;
}
}
double[] min = new double[dim];
for (int j = 0; j < dim; j++) {
min[j] = Double.POSITIVE_INFINITY;
}
for (int w = 0; w < dim; w++) {
for (int j = 0; j < dim; j++) {
if (costMatrix[w][j] < min[j]) {
min[j] = costMatrix[w][j];
}
}
}
for (int w = 0; w < dim; w++) {
for (int j = 0; j < dim; j++) {
costMatrix[w][j] -= min[j];
}
}
}
/**
* Update labels with the specified slack by adding the slack value for
* committed workers and by subtracting the slack value for committed jobs. In
* addition, update the minimum slack values appropriately.
*/
protected void updateLabeling(double slack) {
for (int w = 0; w < dim; w++) {
if (committedWorkers[w]) {
labelByWorker[w] += slack;
}
}
for (int j = 0; j < dim; j++) {
if (parentWorkerByCommittedJob[j] != -1) {
labelByJob[j] -= slack;
} else {
minSlackValueByJob[j] -= slack;
}
}
}
}