forked from tidymodels/parsnip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetails_boost_tree_C5.0.Rd
82 lines (70 loc) · 2.63 KB
/
details_boost_tree_C5.0.Rd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/boost_tree_C5.0.R
\name{details_boost_tree_C5.0}
\alias{details_boost_tree_C5.0}
\title{Boosted trees via C5.0}
\description{
\code{\link[C50:C5.0]{C50::C5.0()}} creates a series of classification trees forming an
ensemble. Each tree depends on the results of previous trees. All trees in
the ensemble are combined to produce a final prediction.
}
\details{
For this engine, there is a single mode: classification
\subsection{Tuning Parameters}{
This model has 3 tuning parameters:
\itemize{
\item \code{trees}: # Trees (type: integer, default: 15L)
\item \code{min_n}: Minimal Node Size (type: integer, default: 2L)
\item \code{sample_size}: Proportion Observations Sampled (type: double,
default: 1.0)
}
The implementation of C5.0 limits the number of trees to be between 1
and 100.
}
\subsection{Translation from parsnip to the original package (classification)}{\if{html}{\out{<div class="r">}}\preformatted{boost_tree(trees = integer(), min_n = integer(), sample_size = numeric()) \%>\%
set_engine("C5.0") \%>\%
set_mode("classification") \%>\%
translate()
}\if{html}{\out{</div>}}\preformatted{## Boosted Tree Model Specification (classification)
##
## Main Arguments:
## trees = integer()
## min_n = integer()
## sample_size = numeric()
##
## Computational engine: C5.0
##
## Model fit template:
## parsnip::C5.0_train(x = missing_arg(), y = missing_arg(), weights = missing_arg(),
## trials = integer(), minCases = integer(), sample = numeric())
}
\code{\link[=C5.0_train]{C5.0_train()}} is a wrapper around
\code{\link[C50:C5.0]{C50::C5.0()}} that makes it easier to run this model.
}
\subsection{Preprocessing requirements}{
This engine does not require any special encoding of the predictors.
Categorical predictors can be partitioned into groups of factor levels
(e.g. \verb{\{a, c\}} vs \verb{\{b, d\}}) when splitting at a node. Dummy variables
are not required for this model.
}
\subsection{Other details}{
\subsection{Early stopping}{
By default, early stopping is used. To use the complete set of boosting
iterations, pass \code{earlyStopping = FALSE} to
\code{\link[=set_engine]{set_engine()}}. Also, it is unlikely that early
stopping will occur if \code{sample_size = 1}.
}
}
\subsection{Examples}{
The “Fitting and Predicting with parsnip” article contains
\href{https://parsnip.tidymodels.org/articles/articles/Examples.html#boost-tree-C5.0}{examples}
for \code{boost_tree()} with the \code{"C5.0"} engine.
}
\subsection{References}{
\itemize{
\item Kuhn, M, and K Johnson. 2013. \emph{Applied Predictive Modeling}.
Springer.
}
}
}
\keyword{internal}