KQ (Kafka Queue) is a lightweight Python library which lets you enqueue and execute jobs asynchronously using Apache Kafka. It uses kafka-python under the hood.
- Support for Python 3.5 will be dropped from KQ version 3.0.0.
- See releases for latest updates.
- Apache Kafka 0.9+
- Python 3.6+
Install using pip:
pip install kq
Start your Kafka instance. Example using Docker:
docker run -p 9092:9092 -e ADV_HOST=127.0.0.1 lensesio/fast-data-dev
Define your KQ worker.py
module:
import logging
from kafka import KafkaConsumer
from kq import Worker
# Set up logging.
formatter = logging.Formatter('[%(levelname)s] %(message)s')
stream_handler = logging.StreamHandler()
stream_handler.setFormatter(formatter)
logger = logging.getLogger('kq.worker')
logger.setLevel(logging.DEBUG)
logger.addHandler(stream_handler)
# Set up a Kafka consumer.
consumer = KafkaConsumer(
bootstrap_servers='127.0.0.1:9092',
group_id='group',
auto_offset_reset='latest'
)
# Set up a worker.
worker = Worker(topic='topic', consumer=consumer)
worker.start()
Start your worker:
python my_worker.py
[INFO] Starting Worker(hosts=127.0.0.1:9092 topic=topic, group=group) ...
Enqueue a function call:
import requests
from kafka import KafkaProducer
from kq import Queue
# Set up a Kafka producer.
producer = KafkaProducer(bootstrap_servers='127.0.0.1:9092')
# Set up a queue.
queue = Queue(topic='topic', producer=producer)
# Enqueue a function call.
job = queue.enqueue(requests.get, 'https://google.com')
# You can also specify the job timeout, Kafka message key and partition.
job = queue.using(timeout=5, key=b'foo', partition=0).enqueue(requests.get, 'https://google.com')
The worker executes the job in the background:
python my_worker.py
[INFO] Starting Worker(hosts=127.0.0.1:9092, topic=topic, group=group) ...
[INFO] Processing Message(topic=topic, partition=0, offset=0) ...
[INFO] Executing job c7bf2359: requests.api.get('https://www.google.com')
[INFO] Job c7bf2359 returned: <Response [200]>
See the documentation for more information.