-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathoperators.py
108 lines (88 loc) · 3.1 KB
/
operators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
# library to create operators
from __future__ import division
import numpy as np
from scipy.sparse import csc_matrix as csc
def interface1d(h,cut = 3.):
dind = 1 # index to which divide the positions
if h.has_spin: dind *= 2 # duplicate for spin
if h.has_eh: dind *= 2 # duplicate for eh
n = len(h.intra) # number of elments of the hamiltonian
data = [] # epmty list
for i in range(n): # loop over elements
y = h.geometry.y[i//dind]
if y < -cut: data.append(-1.)
elif y > cut: data.append(1.)
else: data.append(0.)
row, col = range(n),range(n)
m = csc((data,(row,col)),shape=(n,n),dtype=np.complex)
return m # return the operator
def bulk1d(h,p = 0.5):
dind = 1 # index to which divide the positions
if h.has_spin: dind *= 2 # duplicate for spin
if h.has_eh: dind *= 2 # duplicate for eh
n = h.intra.shape[0] # number of elments of the hamiltonian
data = [] # epmty list
cut = np.max(h.geometry.y)*p
for i in range(n): # loop over elements
y = h.geometry.y[i//dind]
if y < -cut: data.append(-1.)
elif y > cut: data.append(1.)
else: data.append(0.)
row, col = range(n),range(n)
m = csc((data,(row,col)),shape=(n,n),dtype=np.complex)
return m # return the operator
def get_sz(h):
"""Operator for the calculation of Sz expectation value"""
if h.has_eh: raise
if not h.has_spin: raise
if h.has_spin:
op = np.zeros(h.intra.shape,dtype=np.complex) # initialize matrix
for i in range(len(op)):
op[i,i] = (-1.)**i
if h.is_sparse: op = csc(op) # transform into sparse
return op
def get_sx(h):
"""Operator for the calculation of Sz expectation value"""
if h.has_eh: raise
if not h.has_spin: raise
if h.has_spin:
op = np.zeros(h.intra.shape,dtype=np.complex) # initialize matrix
for i in range(len(op)//2):
op[2*i,2*i+1] = 1.
op[2*i+1,2*i] = 1.
if h.is_sparse: op = csc(op) # transform into sparse
return op
def get_sy(h):
"""Operator for the calculation of Sz expectation value"""
if h.has_eh: raise
if not h.has_spin: raise
if h.has_spin:
op = np.zeros(h.intra.shape,dtype=np.complex) # initialize matrix
for i in range(len(op)//2):
op[2*i,2*i+1] = -1j
op[2*i+1,2*i] = 1j
return op
def get_z(h):
"""Operator for the calculation of z expectation value"""
if h.intra.shape[0]==len(h.geometry.z): # if as many positions as entries
op = np.zeros(h.intra.shape,dtype=np.complex) # initialize matrix
for i in range(len(h.geometry.z)):
op[i,i] = h.geometry.z[i]
return op
raise
if h.has_eh: raise
if not h.has_spin: raise
if h.has_spin:
op = np.zeros(h.intra.shape,dtype=np.complex) # initialize matrix
for i in range(len(op)//2):
op[2*i,2*i+1] = -1j
op[2*i+1,2*i] = 1j
def get_rop(h,fun):
"""Operator for the calculation of z expectation value"""
if h.intra.shape[0]==len(h.geometry.z): # if as many positions as entries
op = np.zeros(h.intra.shape,dtype=np.complex) # initialize matrix
for i in range(len(h.geometry.z)):
value = fun(h.geometry.r[i]) # evaluate function
op[i,i] = value
return op
raise