forked from kostko/arduino-crypto
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRNG.cpp
839 lines (772 loc) · 28.8 KB
/
RNG.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
/*
* Copyright (C) 2015 Southern Storm Software, Pty Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#include "RNG.h"
#include "NoiseSource.h"
#include "ChaCha.h"
#include "Crypto.h"
#include "utility/ProgMemUtil.h"
#include <Arduino.h>
#if defined (__arm__) && defined (__SAM3X8E__)
// The Arduino Due does not have any EEPROM natively on the main chip.
// However, it does have a TRNG and flash memory.
#define RNG_DUE_TRNG 1
#elif defined(__AVR__)
#define RNG_EEPROM 1 // Use EEPROM to save the seed.
#define RNG_WATCHDOG 1 // Harvest entropy from watchdog jitter.
#include <avr/eeprom.h>
#include <avr/wdt.h>
#endif
#include <string.h>
/**
* \class RNGClass RNG.h <RNG.h>
* \brief Pseudo random number generator suitable for cryptography.
*
* Random number generators must be seeded properly before they can
* be used or an adversary may be able to predict the random output.
* Seed data may be:
*
* \li Device-specific, for example serial numbers or MAC addresses.
* \li Application-specific, unique to the application. The tag that is
* passed to begin() is an example of an application-specific value.
* \li Noise-based, generated by a hardware random number generator
* that provides unpredictable values from a noise source.
*
* The following example demonstrates how to initialise the random
* number generator:
*
* \code
* #include <SPI.h>
* #include <Ethernet.h>
* #include <Crypto.h>
* #include <RNG.h>
* #include <TransistorNoiseSource.h>
*
* // Noise source to seed the random number generator.
* TransistorNoiseSource noise(A1);
*
* // MAC address for Ethernet communication.
* byte mac_address[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
*
* void setup() {
* // Initialize the Ethernet shield.
* Ethernet.begin(mac_address);
*
* // Initialize the random number generator with the application tag
* // "MyApp 1.0" and load the previous seed from EEPROM address 950.
* RNG.begin("MyApp 1.0", 950);
*
* // Stir in the Ethernet MAC address.
* RNG.stir(mac_address, sizeof(mac_address));
*
* // Add the noise source to the list of sources known to RNG.
* RNG.addNoiseSource(noise);
*
* // ...
* }
* \endcode
*
* The application should regularly call loop() to stir in new data
* from the registered noise sources and to periodically save the seed:
*
* \code
* void loop() {
* // ...
*
* // Perform regular housekeeping on the random number generator.
* RNG.loop();
*
* // ...
* }
* \endcode
*
* The loop() function will automatically save the random number seed on a
* regular basis. By default the seed is saved every hour but this can be
* changed using setAutoSaveTime().
*
* Keep in mind that saving too often may cause the EEPROM to wear out quicker.
* It is wise to limit saving to once an hour or once a day depending
* upon how long you intend to field the device before replacing it.
* For example, an EEPROM rated for 100k erase/write cycles will last about
* 69 days saving once a minute or 11 years saving once an hour.
*
* The application can still elect to call save() at any time if wants.
* For example, if the application can detect power loss or shutdown
* conditions programmatically, then it may make sense to force a save()
* of the seed upon shutdown.
*
* The Arduino Due does not have EEPROM so RNG saves the seed into
* the last page of system flash memory instead. The RNG class will also
* mix in data from the CPU's built-in True Random Number Generator (TRNG).
* Assuming that the CPU's TRNG is trustworthy, this should be sufficient
* to properly seed the random number generator. It is recommended to
* also mix in data from other noise sources just in case the CPU's TRNG
* is not trustworthy.
*
* \sa NoiseSource
*/
/**
* \brief Global random number generator instance.
*
* \sa RNGClass
*/
RNGClass RNG;
/**
* \var RNGClass::SEED_SIZE
* \brief Size of a saved random number seed in EEPROM space.
*/
// Number of ChaCha hash rounds to use for random number generation.
#define RNG_ROUNDS 20
// Force a rekey after this many blocks of random data.
#define RNG_REKEY_BLOCKS 16
// Maximum entropy credit that can be contained in the pool.
#define RNG_MAX_CREDITS 384
/** @cond */
// Tag for 256-bit ChaCha20 keys. This will always appear in the
// first 16 bytes of the block. The remaining 48 bytes are the seed.
static const char tagRNG[16] PROGMEM = {
'e', 'x', 'p', 'a', 'n', 'd', ' ', '3',
'2', '-', 'b', 'y', 't', 'e', ' ', 'k'
};
// Initialization seed. This is the ChaCha20 output of hashing
// "expand 32-byte k" followed by 48 bytes set to the numbers 1 to 48.
// The ChaCha20 output block is then truncated to the first 48 bytes.
//
// This value is intended to start the RNG in a semi-chaotic state if
// we don't have a previously saved seed in EEPROM.
static const uint8_t initRNG[48] PROGMEM = {
0xB0, 0x2A, 0xAE, 0x7D, 0xEE, 0xCB, 0xBB, 0xB1,
0xFC, 0x03, 0x6F, 0xDD, 0xDC, 0x7D, 0x76, 0x67,
0x0C, 0xE8, 0x1F, 0x0D, 0xA3, 0xA0, 0xAA, 0x1E,
0xB0, 0xBD, 0x72, 0x6B, 0x2B, 0x4C, 0x8A, 0x7E,
0x34, 0xFC, 0x37, 0x60, 0xF4, 0x1E, 0x22, 0xA0,
0x0B, 0xFB, 0x18, 0x84, 0x60, 0xA5, 0x77, 0x72
};
#if defined(RNG_WATCHDOG)
// Use jitter between the watchdog timer and the main CPU clock to
// harvest some entropy on AVR-based systems. This technique comes from:
//
// https://sites.google.com/site/astudyofentropy/project-definition/timer-jitter-entropy-sources/entropy-library
//
// The watchdog generates entropy very slowly - it can take around 32 seconds
// to generate 256 bits of entropy credit. This is a "better than nothing"
// entropy source but a real noise source is definitely recommended.
// Helper macros for specific 32-bit shift counts.
#define leftShift3(value) ((value) << 3)
#define leftShift10(value) ((value) << 10)
#define leftShift15(value) ((value) << 15)
#define rightShift6(value) ((value) >> 6)
#define rightShift11(value) ((value) >> 11)
static uint32_t volatile hash = 0;
static uint8_t volatile outBits = 0;
// Watchdog interrupt handler. This fires off every 16ms. We collect
// 32 bits and then pass them off onto RNGClass::loop().
ISR(WDT_vect)
{
// Read the low byte of Timer 1. We assume that the timer was
// initialized by the Arduino startup code for PWM use or that the
// application is free-running Timer 1 for its own purposes.
// Timer 0 is used on systems that don't have a Timer 1.
#if defined(TCNT1L)
unsigned char value = TCNT1L;
#elif defined(TCNT0L)
unsigned char value = TCNT0L;
#else
unsigned char value = TCNT0;
#endif
// Use Jenkin's one-at-a-time hash function to scatter the entropy a bit.
// https://en.wikipedia.org/wiki/Jenkins_hash_function
hash += value;
hash += leftShift10(hash);
hash ^= rightShift6(hash);
++outBits;
}
#endif // RNG_WATCHDOG
/** @endcond */
/**
* \brief Constructs a new random number generator instance.
*
* This constructor must be followed by a call to begin() to
* properly initialize the random number generator.
*
* \sa begin()
*/
RNGClass::RNGClass()
: address(0)
, credits(0)
, firstSave(1)
, timer(0)
, timeout(3600000UL) // 1 hour in milliseconds
, count(0)
, trngPosn(0)
{
}
/**
* \brief Destroys this random number generator instance.
*/
RNGClass::~RNGClass()
{
#if defined(RNG_DUE_TRNG)
// Disable the TRNG in the Arduino Due.
REG_TRNG_CR = TRNG_CR_KEY(0x524E47);
#endif
#if defined(RNG_WATCHDOG)
// Disable interrupts and reset the watchdog.
cli();
wdt_reset();
// Clear the "reset due to watchdog" flag.
MCUSR &= ~(1 << WDRF);
// Disable the watchdog.
_WD_CONTROL_REG |= (1 << _WD_CHANGE_BIT) | (1 << WDE);
_WD_CONTROL_REG = 0;
// Re-enable interrupts. The watchdog should be stopped.
sei();
#endif
clean(block);
clean(stream);
}
#if defined(RNG_DUE_TRNG)
// Find the flash memory of interest. Allow for the possibility
// of other SAM-based Arduino variants in the future.
#if defined(IFLASH1_ADDR)
#define RNG_FLASH_ADDR IFLASH1_ADDR
#define RNG_FLASH_SIZE IFLASH1_SIZE
#define RNG_FLASH_PAGE_SIZE IFLASH1_PAGE_SIZE
#define RNG_EFC EFC1
#elif defined(IFLASH0_ADDR)
#define RNG_FLASH_ADDR IFLASH0_ADDR
#define RNG_FLASH_SIZE IFLASH0_SIZE
#define RNG_FLASH_PAGE_SIZE IFLASH0_PAGE_SIZE
#define RNG_EFC EFC0
#else
#define RNG_FLASH_ADDR IFLASH_ADDR
#define RNG_FLASH_SIZE IFLASH_SIZE
#define RNG_FLASH_PAGE_SIZE IFLASH_PAGE_SIZE
#define RNG_EFC EFC
#endif
// Address of the flash page to use for saving the seed on the Due.
// All SAM variants have a page size of 256 bytes or greater so there is
// plenty of room for the 48 byte seed in the last page of flash memory.
#define RNG_SEED_ADDR (RNG_FLASH_ADDR + RNG_FLASH_SIZE - RNG_FLASH_PAGE_SIZE)
#define RNG_SEED_PAGE ((RNG_FLASH_SIZE / RNG_FLASH_PAGE_SIZE) - 1)
// Stir in the unique identifier for the Arduino Due's CPU.
// This function must be in RAM because programs running out of
// flash memory are not allowed to access the unique identifier.
// Info from: http://forum.arduino.cc/index.php?topic=289190.0
__attribute__((section(".ramfunc")))
static void stirUniqueIdentifier(void)
{
uint32_t id[4];
// Start Read Unique Identifier.
RNG_EFC->EEFC_FCR = (0x5A << 24) | EFC_FCMD_STUI;
while ((RNG_EFC->EEFC_FSR & EEFC_FSR_FRDY) != 0)
; // do nothing until FRDY falls.
// Read the identifier.
id[0] = *((const uint32_t *)RNG_FLASH_ADDR);
id[1] = *((const uint32_t *)(RNG_FLASH_ADDR + 4));
id[2] = *((const uint32_t *)(RNG_FLASH_ADDR + 8));
id[3] = *((const uint32_t *)(RNG_FLASH_ADDR + 12));
// Stop Read Unique Identifier.
RNG_EFC->EEFC_FCR = (0x5A << 24) | EFC_FCMD_SPUI;
while ((RNG_EFC->EEFC_FSR & EEFC_FSR_FRDY) == 0)
; // do nothing until FRDY rises.
// Stir the unique identifier into the entropy pool.
RNG.stir((uint8_t *)id, sizeof(id));
}
// Erases the flash page containing the seed and then writes the new seed.
// It is assumed the seed has already been loaded into the latch registers.
__attribute__((section(".ramfunc")))
static void eraseAndWriteSeed()
{
// Execute the "Erase and Write Page" command.
RNG_EFC->EEFC_FCR = (0x5A << 24) | (RNG_SEED_PAGE << 8) | EFC_FCMD_EWP;
// Wait for the FRDY bit to be raised.
while ((RNG_EFC->EEFC_FSR & EEFC_FSR_FRDY) == 0)
; // do nothing until FRDY rises.
}
#endif
/**
* \brief Initializes the random number generator.
*
* \param tag A string that is stirred into the random pool at startup;
* usually this should be a value that is unique to the application and
* version such as "MyApp 1.0" so that different applications do not
* generate the same sequence of values upon first boot.
* \param eepromAddress The EEPROM address to load the previously saved
* seed from and to save new seeds when save() is called. There must be
* at least SEED_SIZE (49) bytes of EEPROM space available at the address.
*
* This function should be followed by calls to addNoiseSource() to
* register the application's noise sources.
*
* The \a eepromAddress is ignored on the Arduino Due. The seed is instead
* stored in the last page of system flash memory.
*
* \sa addNoiseSource(), stir(), save()
*/
void RNGClass::begin(const char *tag, int eepromAddress)
{
// Save the EEPROM address for use by save().
address = eepromAddress;
// Initialize the ChaCha20 input block from the saved seed.
memcpy_P(block, tagRNG, sizeof(tagRNG));
memcpy_P(block + 4, initRNG, sizeof(initRNG));
#if defined(RNG_EEPROM)
if (eeprom_read_byte((const uint8_t *)address) == 'S') {
// We have a saved seed: XOR it with the initialization block.
for (int posn = 0; posn < 12; ++posn) {
block[posn + 4] ^=
eeprom_read_dword((const uint32_t *)(address + posn * 4 + 1));
}
}
#elif defined(RNG_DUE_TRNG)
// Do we have a seed saved in the last page of flash memory on the Due?
int posn, counter;
if (((const uint32_t *)RNG_SEED_ADDR)[0] == 'S') {
// XOR the saved seed with the initialization block.
for (posn = 0; posn < 12; ++posn)
block[posn + 4] ^= ((const uint32_t *)RNG_SEED_ADDR)[posn + 1];
}
// If the device has just been reprogrammed, there will be no saved seed.
// XOR the initialization block with some output from the CPU's TRNG
// to permute the state in a first boot situation after reprogramming.
pmc_enable_periph_clk(ID_TRNG);
REG_TRNG_CR = TRNG_CR_KEY(0x524E47) | TRNG_CR_ENABLE;
REG_TRNG_IDR = TRNG_IDR_DATRDY; // Disable interrupts - we will poll.
for (posn = 0; posn < 12; ++posn) {
// According to the documentation the TRNG should produce a new
// 32-bit random value every 84 clock cycles. If it still hasn't
// produced a value after 200 iterations, then assume that the
// TRNG is not producing output and stop.
for (counter = 0; counter < 200; ++counter) {
if ((REG_TRNG_ISR & TRNG_ISR_DATRDY) != 0)
break;
}
if (counter >= 200)
break;
block[posn + 4] ^= REG_TRNG_ODATA;
}
#endif
// No entropy credits for the saved seed.
credits = 0;
// Trigger an automatic save once the entropy credits max out.
firstSave = 1;
// Rekey the random number generator immediately.
rekey();
// Stir in the supplied tag data but don't credit any entropy to it.
if (tag)
stir((const uint8_t *)tag, strlen(tag));
#if defined(RNG_DUE_TRNG)
// Stir in the unique identifier for the CPU so that different
// devices will give different outputs even without seeding.
stirUniqueIdentifier();
#endif
#if defined(RNG_WATCHDOG)
// Disable interrupts and reset the watchdog.
cli();
wdt_reset();
// Clear the "reset due to watchdog" flag.
MCUSR &= ~(1 << WDRF);
// Enable the watchdog with the smallest duration (16ms)
// and interrupt-only mode.
_WD_CONTROL_REG |= (1 << _WD_CHANGE_BIT) | (1 << WDE);
_WD_CONTROL_REG = (1 << WDIE);
// Re-enable interrupts. The watchdog should be running.
sei();
#endif
// Re-save the seed to obliterate the previous value and to ensure
// that if the system is reset without a call to save() that we won't
// accidentally generate the same sequence of random data again.
save();
}
/**
* \brief Adds a noise source to the random number generator.
*
* \param source The noise source to add, which will be polled regularly
* by loop() to accumulate noise-based entropy from the source.
*
* RNG supports a maximum of four noise sources. If the application needs
* more than that then the application must poll the noise sources itself by
* calling NoiseSource::stir() directly.
*
* \sa loop(), begin()
*/
void RNGClass::addNoiseSource(NoiseSource &source)
{
#define MAX_NOISE_SOURCES (sizeof(noiseSources) / sizeof(noiseSources[0]))
if (count < MAX_NOISE_SOURCES) {
noiseSources[count++] = &source;
source.added();
}
}
/**
* \brief Sets the amount of time between automatic seed saves.
*
* \param minutes The number of minutes between automatic seed saves.
*
* The default time between automatic seed saves is 1 hour.
*
* This function is intended to help with EEPROM wear by slowing down how
* often seed data is saved as noise is stirred into the random pool.
* The exact period to use depends upon how long you intend to field
* the device before replacing it. For example, an EEPROM rated for
* 100k erase/write cycles will last about 69 days saving once a minute
* or 11 years saving once an hour.
*
* \sa save(), stir()
*/
void RNGClass::setAutoSaveTime(uint16_t minutes)
{
if (!minutes)
minutes = 1; // Just in case.
timeout = ((uint32_t)minutes) * 60000U;
}
/**
* \brief Generates random bytes into a caller-supplied buffer.
*
* \param data Points to the buffer to fill with random bytes.
* \param len Number of bytes to generate.
*
* Calling this function will decrease the amount of entropy in the
* random number pool by \a len * 8 bits. If there isn't enough
* entropy, then this function will still return \a len bytes of
* random data generated from what entropy it does have.
*
* If the application requires a specific amount of entropy before
* generating important values, the available() function can be
* polled to determine when sufficient entropy is available.
*
* \sa available(), stir()
*/
void RNGClass::rand(uint8_t *data, size_t len)
{
// Decrease the amount of entropy in the pool.
if (len > (credits / 8))
credits = 0;
else
credits -= len * 8;
// Generate the random data.
uint8_t count = 0;
while (len > 0) {
// Force a rekey if we have generated too many blocks in this request.
if (count >= RNG_REKEY_BLOCKS) {
rekey();
count = 1;
} else {
++count;
}
// Increment the low counter word and generate a new keystream block.
++(block[12]);
ChaCha::hashCore(stream, block, RNG_ROUNDS);
// Copy the data to the return buffer.
if (len < 64) {
memcpy(data, stream, len);
break;
} else {
memcpy(data, stream, 64);
data += 64;
len -= 64;
}
}
// Force a rekey after every request.
rekey();
}
/**
* \brief Determine if there is sufficient entropy available for a
* specific request size.
*
* \param len The number of bytes of random data that will be requested
* via a call to rand().
* \return Returns true if there is at least \a len * 8 bits of entropy
* in the random number pool, or false if not.
*
* This function can be used by the application to wait for sufficient
* entropy to become available from the system's noise sources before
* generating important values. For example:
*
* \code
* bool haveKey = false;
* byte key[32];
*
* void loop() {
* ...
*
* if (!haveKey && RNG.available(sizeof(key))) {
* RNG.rand(key, sizeof(key));
* haveKey = true;
* }
*
* ...
* }
* \endcode
*
* If \a len is larger than the maximum number of entropy credits supported
* by the random number pool (384 bits, 48 bytes), then the maximum will be
* used instead. For example, asking if 512 bits (64 bytes) are available
* will return true if in reality only 384 bits are available. If this is a
* problem for the application's security requirements, then large requests
* for random data should be broken up into smaller chunks with the
* application waiting for the entropy pool to refill between chunks.
*
* \sa rand()
*/
bool RNGClass::available(size_t len) const
{
if (len >= (RNG_MAX_CREDITS / 8))
return credits >= RNG_MAX_CREDITS;
else
return len <= (credits / 8);
}
/**
* \brief Stirs additional entropy data into the random pool.
*
* \param data Points to the additional data to be stirred in.
* \param len Number of bytes to be stirred in.
* \param credit The number of bits of entropy to credit for the
* data that is stirred in. Note that this is bits, not bytes.
*
* The maximum credit allowed is \a len * 8 bits, indicating that
* every bit in the input \a data is good and random. Practical noise
* sources are rarely that good, so \a credit will usually be smaller.
* For example, to credit 2 bits of entropy per byte, the function
* would be called as follows:
*
* \code
* RNG.stir(noise_data, noise_bytes, noise_bytes * 2);
* \endcode
*
* If \a credit is zero, then the \a data will be stirred in but no
* entropy credit is given. This is useful for static values like
* serial numbers and MAC addresses that are different between
* devices but highly predictable.
*
* \sa loop()
*/
void RNGClass::stir(const uint8_t *data, size_t len, unsigned int credit)
{
// Increase the entropy credit.
if ((credit / 8) >= len && len)
credit = len * 8;
if ((RNG_MAX_CREDITS - credits) > credit)
credits += credit;
else
credits = RNG_MAX_CREDITS;
// Process the supplied input data.
if (len > 0) {
// XOR the data with the ChaCha input block in 48 byte
// chunks and rekey the ChaCha cipher for each chunk to mix
// the data in. This should scatter any "true entropy" in
// the input across the entire block.
while (len > 0) {
size_t templen = len;
if (templen > 48)
templen = 48;
uint8_t *output = ((uint8_t *)block) + 16;
len -= templen;
while (templen > 0) {
*output++ ^= *data++;
--templen;
}
rekey();
}
} else {
// There was no input data, so just force a rekey so we
// get some mixing of the state even without new data.
rekey();
}
// Save if this is the first time we have reached max entropy.
// This provides some protection if the system is powered off before
// the first auto-save timeout occurs.
if (firstSave && credits >= RNG_MAX_CREDITS) {
firstSave = 0;
save();
}
}
/**
* \brief Saves the random seed to EEPROM.
*
* During system startup, noise sources typically won't have accumulated
* much entropy. But startup is usually the time when the system most
* needs to generate random data for session keys, IV's, and the like.
*
* The purpose of this function is to pass some of the accumulated entropy
* from one session to the next after a loss of power. Thus, once the system
* has been running for a while it will get progressively better at generating
* random values and the accumulated entropy will not be completely lost.
*
* Normally it isn't necessary to call save() directly. The loop() function
* will automatically save the seed on a periodic basis (default of 1 hour).
*
* The seed that is saved is generated in such a way that it cannot be used
* to predict random values that were generated previously or subsequently
* in the current session. So a compromise of the EEPROM contents of a
* captured device should not result in compromise of random values
* that have already been generated. However, if power is lost and the
* system restarted, then there will be a short period of time where the
* random state will be predictable from the seed. For this reason it is
* very important to stir() in new noise data at startup.
*
* \sa loop(), stir()
*/
void RNGClass::save()
{
// Generate random data from the current state and save
// that as the seed. Then force a rekey.
++(block[12]);
ChaCha::hashCore(stream, block, RNG_ROUNDS);
#if defined(RNG_EEPROM)
eeprom_write_block(stream, (void *)(address + 1), 48);
eeprom_update_byte((uint8_t *)address, 'S');
#elif defined(RNG_DUE_TRNG)
unsigned posn;
((uint32_t *)(RNG_SEED_ADDR))[0] = 'S';
for (posn = 0; posn < 12; ++posn)
((uint32_t *)(RNG_SEED_ADDR))[posn + 1] = stream[posn];
for (posn = 13; posn < (RNG_FLASH_PAGE_SIZE / 4); ++posn)
((uint32_t *)(RNG_SEED_ADDR))[posn + 13] = 0xFFFFFFFF;
eraseAndWriteSeed();
#endif
rekey();
timer = millis();
}
/**
* \brief Run periodic housekeeping tasks on the random number generator.
*
* This function must be called on a regular basis from the application's
* main "loop()" function.
*/
void RNGClass::loop()
{
// Stir in the entropy from all registered noise sources.
for (uint8_t posn = 0; posn < count; ++posn)
noiseSources[posn]->stir();
#if defined(RNG_DUE_TRNG)
// If there is data available from the Arudino Due's TRNG, then XOR
// it with the state block and increase the entropy credit. We don't
// call stir() yet because that will seriously slow down the system
// given how fast the TRNG is. Instead we save up the XOR'ed TRNG
// data until the next rand() call and then hash it to generate the
// desired output.
//
// The CPU documentation claims that the TRNG output is very good so
// this should only make the pool more and more random as time goes on.
// However there is a risk that the CPU manufacturer was pressured by
// government or intelligence agencies to insert a back door that
// generates predictable output. Or the manufacturer was overly
// optimistic about their TRNG design and it is actually flawed in a
// way they don't realise.
//
// If you are concerned about such threats, then make sure to mix in
// data from other noise sources. By hashing together the TRNG with
// the other noise data, rand() should produce unpredictable data even
// if one of the sources is actually predictable.
if ((REG_TRNG_ISR & TRNG_ISR_DATRDY) != 0) {
block[4 + trngPosn] ^= REG_TRNG_ODATA;
if (++trngPosn >= 12)
trngPosn = 0;
if (credits < RNG_MAX_CREDITS) {
// Credit 1 bit of entropy for the word. The TRNG should be
// better than this but it is so fast that we want to collect
// up more data before passing it to the application.
++credits;
}
}
#elif defined(RNG_WATCHDOG)
// Read the 32 bit buffer from the WDT interrupt.
cli();
if (outBits >= 32) {
uint32_t value = hash;
hash = 0;
outBits = 0;
sei();
// Final steps of the Jenkin's one-at-a-time hash function.
// https://en.wikipedia.org/wiki/Jenkins_hash_function
value += leftShift3(value);
value ^= rightShift11(value);
value += leftShift15(value);
// XOR the word with the state. Stir once we accumulate 48 bytes,
// which happens about once every 6.4 seconds.
block[4 + trngPosn] ^= value;
if (++trngPosn >= 12) {
trngPosn = 0;
// Credit 1 bit of entropy for each byte of input. It can take
// between 30 and 40 seconds to accumulate 256 bits of credit.
stir(0, 0, 48);
}
} else {
sei();
}
#endif
// Save the seed if the auto-save timer has expired.
if ((millis() - timer) >= timeout)
save();
}
/**
* \brief Destroys the data in the random number pool and the saved seed
* in EEPROM.
*
* This function attempts to throw away any data that could theoretically be
* used to predict previous and future outputs of the random number generator
* if the device is captured, sold, or otherwise compromised.
*
* After this function is called, begin() must be called again to
* re-initialize the random number generator.
*
* \note The rand() and save() functions take some care to manage the
* random number pool in a way that makes prediction of past outputs from a
* captured state very difficult. Future outputs may be predictable if
* noise or other high-entropy data is not mixed in with stir() on a
* regular basis.
*
* \sa begin()
*/
void RNGClass::destroy()
{
clean(block);
clean(stream);
#if defined(RNG_EEPROM)
for (int posn = 0; posn < SEED_SIZE; ++posn)
eeprom_write_byte((uint8_t *)(address + posn), 0xFF);
#elif defined(RNG_DUE_TRNG)
for (unsigned posn = 0; posn < (RNG_FLASH_PAGE_SIZE / 4); ++posn)
((uint32_t *)(RNG_SEED_ADDR))[posn] = 0xFFFFFFFF;
eraseAndWriteSeed();
#endif
}
/**
* \brief Rekeys the random number generator.
*/
void RNGClass::rekey()
{
// Rekey the cipher for the next request by generating a new block.
// This is intended to make it difficult to wind the random number
// backwards if the state is captured later. The first 16 bytes of
// "block" remain set to "tagRNG".
++(block[12]);
ChaCha::hashCore(stream, block, RNG_ROUNDS);
memcpy(block + 4, stream, 48);
// Permute the high word of the counter using the system microsecond
// counter to introduce a little bit of non-stir randomness for each
// request. Note: If random data is requested on a predictable schedule
// then this may not help very much. It is still necessary to stir in
// high quality entropy data on a regular basis using stir().
block[13] ^= micros();
}