-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdnn_keras.py
97 lines (76 loc) · 2.96 KB
/
dnn_keras.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from keras.models import Sequential
from keras.layers.core import Dense, Dropout, Activation
from keras.layers.advanced_activations import PReLU
import numpy as np
from dnn_get_input import *
import keras
######### Function #########
def softmax(x):
exp_x = np.exp(x)
exp_sum = np.sum(exp_x, axis=1)
return exp_x/exp_sum[:,None]
######### Input Training Data #########
######### Testing Data #########
model = Sequential()
INPUT_DIM = 300
OUTPUT_DIM = 10
model.add(Dense(1500, input_dim=INPUT_DIM, init='uniform')) #original para: activation='relu'
model.add(PReLU(init='zero', weights=None))
model.add(Dropout(0.2))
model.add(Dense(3000, init='uniform'))
model.add(PReLU(init='zero', weights=None))
model.add(Dropout(0.5))
model.add(Dense(1000, init='uniform'))
model.add(PReLU(init='zero', weights=None))
model.add(Dropout(0.3))
model.add(Dense(500, init='uniform'))
model.add(PReLU(init='zero', weights=None))
model.add(Dropout(0.1))
model.add(Dense(100, init='uniform'))
model.add(PReLU(init='zero', weights=None))
#model.add(Dropout(0.1))
model.add(Dense(OUTPUT_DIM, init='uniform'))
model.add(Activation('softmax'))
adagrad = keras.optimizers.Adagrad(lr=0.04, epsilon=1e-04)
early_stop = keras.callbacks.EarlyStopping(monitor='val_loss', patience=1, verbose=1, mode='auto')
model.compile(loss='categorical_crossentropy', optimizer='adagrad', class_mode='categorical')
#data preprocessing for training data
docList, targ_out = openTrainResult('doc_merge_vec_train_2t.txt')
train_vec = openTrainArk(docList)
targ_vec = []
for i in range(len(targ_out)):
vec = np.full(shape = 10, fill_value = 0, dtype='float32')
vec[targ_out[i]] = 1
targ_vec.append(vec)
train_vec = np.asarray(train_vec, dtype = 'float32')
targ_vec = np.asarray(targ_vec, dtype = 'float32')
#data preprocessing for validation data
test_docList, test_out = openTrainResult('doc_merge_vec_test_200t.txt')
test_vec_valid = openTrainArk(test_docList[:5000])
targ_vec_valid = []
for i in range(5000):
vec = np.full(shape = 10, fill_value = 0, dtype='float32')
vec[test_out[i]] = 1
targ_vec_valid.append(vec)
test_vec_valid = np.asarray(test_vec_valid, dtype = 'float32')
targ_vec_valid = np.asarray(targ_vec_valid, dtype = 'float32')
t = Timer()
model.fit(train_vec, targ_vec, nb_epoch=10, batch_size=100, show_accuracy=True, shuffle=True, verbose=1, validation_data = (test_vec_valid, targ_vec_valid), callbacks = [early_stop])
print "Training: " + t.getTimeGap()
#data preprocessing for testing data
train_vec = None
targ_vec = None
test_vec_valid = None
targ_vec_valid = None
test_vec = openTrainArk(test_docList)
targ_vec = []
for i in range(len(test_out)):
vec = np.full(shape = 10, fill_value = 0, dtype='float32')
vec[test_out[i]] = 1
targ_vec.append(vec)
test_vec = np.asarray(test_vec, dtype = 'float32')
targ_vec = np.asarray(targ_vec, dtype = 'float32')
t.getTimeGap()
score = model.evaluate(test_vec, targ_vec, show_accuracy=True, verbose=1)
print "Testing: " + t.getTimeGap()
print score #score = [loss, F1]