forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathraid56.c
2838 lines (2422 loc) · 72.2 KB
/
raid56.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2012 Fusion-io All rights reserved.
* Copyright (C) 2012 Intel Corp. All rights reserved.
*/
#include <linux/sched.h>
#include <linux/bio.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/raid/pq.h>
#include <linux/hash.h>
#include <linux/list_sort.h>
#include <linux/raid/xor.h>
#include <linux/mm.h>
#include "misc.h"
#include "ctree.h"
#include "disk-io.h"
#include "volumes.h"
#include "raid56.h"
#include "async-thread.h"
/* set when additional merges to this rbio are not allowed */
#define RBIO_RMW_LOCKED_BIT 1
/*
* set when this rbio is sitting in the hash, but it is just a cache
* of past RMW
*/
#define RBIO_CACHE_BIT 2
/*
* set when it is safe to trust the stripe_pages for caching
*/
#define RBIO_CACHE_READY_BIT 3
#define RBIO_CACHE_SIZE 1024
#define BTRFS_STRIPE_HASH_TABLE_BITS 11
/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash {
struct list_head hash_list;
spinlock_t lock;
};
/* Used by the raid56 code to lock stripes for read/modify/write */
struct btrfs_stripe_hash_table {
struct list_head stripe_cache;
spinlock_t cache_lock;
int cache_size;
struct btrfs_stripe_hash table[];
};
/*
* A bvec like structure to present a sector inside a page.
*
* Unlike bvec we don't need bvlen, as it's fixed to sectorsize.
*/
struct sector_ptr {
struct page *page;
unsigned int pgoff:24;
unsigned int uptodate:8;
};
enum btrfs_rbio_ops {
BTRFS_RBIO_WRITE,
BTRFS_RBIO_READ_REBUILD,
BTRFS_RBIO_PARITY_SCRUB,
BTRFS_RBIO_REBUILD_MISSING,
};
struct btrfs_raid_bio {
struct btrfs_io_context *bioc;
/* while we're doing rmw on a stripe
* we put it into a hash table so we can
* lock the stripe and merge more rbios
* into it.
*/
struct list_head hash_list;
/*
* LRU list for the stripe cache
*/
struct list_head stripe_cache;
/*
* for scheduling work in the helper threads
*/
struct work_struct work;
/*
* bio list and bio_list_lock are used
* to add more bios into the stripe
* in hopes of avoiding the full rmw
*/
struct bio_list bio_list;
spinlock_t bio_list_lock;
/* also protected by the bio_list_lock, the
* plug list is used by the plugging code
* to collect partial bios while plugged. The
* stripe locking code also uses it to hand off
* the stripe lock to the next pending IO
*/
struct list_head plug_list;
/*
* flags that tell us if it is safe to
* merge with this bio
*/
unsigned long flags;
/*
* set if we're doing a parity rebuild
* for a read from higher up, which is handled
* differently from a parity rebuild as part of
* rmw
*/
enum btrfs_rbio_ops operation;
/* Size of each individual stripe on disk */
u32 stripe_len;
/* How many pages there are for the full stripe including P/Q */
u16 nr_pages;
/* How many sectors there are for the full stripe including P/Q */
u16 nr_sectors;
/* Number of data stripes (no p/q) */
u8 nr_data;
/* Numer of all stripes (including P/Q) */
u8 real_stripes;
/* How many pages there are for each stripe */
u8 stripe_npages;
/* How many sectors there are for each stripe */
u8 stripe_nsectors;
/* First bad stripe, -1 means no corruption */
s8 faila;
/* Second bad stripe (for RAID6 use) */
s8 failb;
/* Stripe number that we're scrubbing */
u8 scrubp;
/*
* size of all the bios in the bio_list. This
* helps us decide if the rbio maps to a full
* stripe or not
*/
int bio_list_bytes;
int generic_bio_cnt;
refcount_t refs;
atomic_t stripes_pending;
atomic_t error;
/*
* these are two arrays of pointers. We allocate the
* rbio big enough to hold them both and setup their
* locations when the rbio is allocated
*/
/* pointers to pages that we allocated for
* reading/writing stripes directly from the disk (including P/Q)
*/
struct page **stripe_pages;
/* Pointers to the sectors in the bio_list, for faster lookup */
struct sector_ptr *bio_sectors;
/*
* For subpage support, we need to map each sector to above
* stripe_pages.
*/
struct sector_ptr *stripe_sectors;
/* Bitmap to record which horizontal stripe has data */
unsigned long *dbitmap;
/* allocated with real_stripes-many pointers for finish_*() calls */
void **finish_pointers;
/* Allocated with stripe_nsectors-many bits for finish_*() calls */
unsigned long *finish_pbitmap;
};
static int __raid56_parity_recover(struct btrfs_raid_bio *rbio);
static noinline void finish_rmw(struct btrfs_raid_bio *rbio);
static void rmw_work(struct work_struct *work);
static void read_rebuild_work(struct work_struct *work);
static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio);
static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed);
static void __free_raid_bio(struct btrfs_raid_bio *rbio);
static void index_rbio_pages(struct btrfs_raid_bio *rbio);
static int alloc_rbio_pages(struct btrfs_raid_bio *rbio);
static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio,
int need_check);
static void scrub_parity_work(struct work_struct *work);
static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func)
{
INIT_WORK(&rbio->work, work_func);
queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work);
}
/*
* the stripe hash table is used for locking, and to collect
* bios in hopes of making a full stripe
*/
int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info)
{
struct btrfs_stripe_hash_table *table;
struct btrfs_stripe_hash_table *x;
struct btrfs_stripe_hash *cur;
struct btrfs_stripe_hash *h;
int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS;
int i;
if (info->stripe_hash_table)
return 0;
/*
* The table is large, starting with order 4 and can go as high as
* order 7 in case lock debugging is turned on.
*
* Try harder to allocate and fallback to vmalloc to lower the chance
* of a failing mount.
*/
table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL);
if (!table)
return -ENOMEM;
spin_lock_init(&table->cache_lock);
INIT_LIST_HEAD(&table->stripe_cache);
h = table->table;
for (i = 0; i < num_entries; i++) {
cur = h + i;
INIT_LIST_HEAD(&cur->hash_list);
spin_lock_init(&cur->lock);
}
x = cmpxchg(&info->stripe_hash_table, NULL, table);
kvfree(x);
return 0;
}
/*
* caching an rbio means to copy anything from the
* bio_sectors array into the stripe_pages array. We
* use the page uptodate bit in the stripe cache array
* to indicate if it has valid data
*
* once the caching is done, we set the cache ready
* bit.
*/
static void cache_rbio_pages(struct btrfs_raid_bio *rbio)
{
int i;
int ret;
ret = alloc_rbio_pages(rbio);
if (ret)
return;
for (i = 0; i < rbio->nr_sectors; i++) {
/* Some range not covered by bio (partial write), skip it */
if (!rbio->bio_sectors[i].page)
continue;
ASSERT(rbio->stripe_sectors[i].page);
memcpy_page(rbio->stripe_sectors[i].page,
rbio->stripe_sectors[i].pgoff,
rbio->bio_sectors[i].page,
rbio->bio_sectors[i].pgoff,
rbio->bioc->fs_info->sectorsize);
rbio->stripe_sectors[i].uptodate = 1;
}
set_bit(RBIO_CACHE_READY_BIT, &rbio->flags);
}
/*
* we hash on the first logical address of the stripe
*/
static int rbio_bucket(struct btrfs_raid_bio *rbio)
{
u64 num = rbio->bioc->raid_map[0];
/*
* we shift down quite a bit. We're using byte
* addressing, and most of the lower bits are zeros.
* This tends to upset hash_64, and it consistently
* returns just one or two different values.
*
* shifting off the lower bits fixes things.
*/
return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS);
}
static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio,
unsigned int page_nr)
{
const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
const u32 sectors_per_page = PAGE_SIZE / sectorsize;
int i;
ASSERT(page_nr < rbio->nr_pages);
for (i = sectors_per_page * page_nr;
i < sectors_per_page * page_nr + sectors_per_page;
i++) {
if (!rbio->stripe_sectors[i].uptodate)
return false;
}
return true;
}
/*
* Update the stripe_sectors[] array to use correct page and pgoff
*
* Should be called every time any page pointer in stripes_pages[] got modified.
*/
static void index_stripe_sectors(struct btrfs_raid_bio *rbio)
{
const u32 sectorsize = rbio->bioc->fs_info->sectorsize;
u32 offset;
int i;
for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) {
int page_index = offset >> PAGE_SHIFT;
ASSERT(page_index < rbio->nr_pages);
rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index];
rbio->stripe_sectors[i].pgoff = offset_in_page(offset);
}
}
/*
* Stealing an rbio means taking all the uptodate pages from the stripe array
* in the source rbio and putting them into the destination rbio.
*
* This will also update the involved stripe_sectors[] which are referring to
* the old pages.
*/
static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest)
{
int i;
struct page *s;
struct page *d;
if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags))
return;
for (i = 0; i < dest->nr_pages; i++) {
s = src->stripe_pages[i];
if (!s || !full_page_sectors_uptodate(src, i))
continue;
d = dest->stripe_pages[i];
if (d)
__free_page(d);
dest->stripe_pages[i] = s;
src->stripe_pages[i] = NULL;
}
index_stripe_sectors(dest);
index_stripe_sectors(src);
}
/*
* merging means we take the bio_list from the victim and
* splice it into the destination. The victim should
* be discarded afterwards.
*
* must be called with dest->rbio_list_lock held
*/
static void merge_rbio(struct btrfs_raid_bio *dest,
struct btrfs_raid_bio *victim)
{
bio_list_merge(&dest->bio_list, &victim->bio_list);
dest->bio_list_bytes += victim->bio_list_bytes;
dest->generic_bio_cnt += victim->generic_bio_cnt;
bio_list_init(&victim->bio_list);
}
/*
* used to prune items that are in the cache. The caller
* must hold the hash table lock.
*/
static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
int bucket = rbio_bucket(rbio);
struct btrfs_stripe_hash_table *table;
struct btrfs_stripe_hash *h;
int freeit = 0;
/*
* check the bit again under the hash table lock.
*/
if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
return;
table = rbio->bioc->fs_info->stripe_hash_table;
h = table->table + bucket;
/* hold the lock for the bucket because we may be
* removing it from the hash table
*/
spin_lock(&h->lock);
/*
* hold the lock for the bio list because we need
* to make sure the bio list is empty
*/
spin_lock(&rbio->bio_list_lock);
if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) {
list_del_init(&rbio->stripe_cache);
table->cache_size -= 1;
freeit = 1;
/* if the bio list isn't empty, this rbio is
* still involved in an IO. We take it out
* of the cache list, and drop the ref that
* was held for the list.
*
* If the bio_list was empty, we also remove
* the rbio from the hash_table, and drop
* the corresponding ref
*/
if (bio_list_empty(&rbio->bio_list)) {
if (!list_empty(&rbio->hash_list)) {
list_del_init(&rbio->hash_list);
refcount_dec(&rbio->refs);
BUG_ON(!list_empty(&rbio->plug_list));
}
}
}
spin_unlock(&rbio->bio_list_lock);
spin_unlock(&h->lock);
if (freeit)
__free_raid_bio(rbio);
}
/*
* prune a given rbio from the cache
*/
static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio)
{
struct btrfs_stripe_hash_table *table;
unsigned long flags;
if (!test_bit(RBIO_CACHE_BIT, &rbio->flags))
return;
table = rbio->bioc->fs_info->stripe_hash_table;
spin_lock_irqsave(&table->cache_lock, flags);
__remove_rbio_from_cache(rbio);
spin_unlock_irqrestore(&table->cache_lock, flags);
}
/*
* remove everything in the cache
*/
static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info)
{
struct btrfs_stripe_hash_table *table;
unsigned long flags;
struct btrfs_raid_bio *rbio;
table = info->stripe_hash_table;
spin_lock_irqsave(&table->cache_lock, flags);
while (!list_empty(&table->stripe_cache)) {
rbio = list_entry(table->stripe_cache.next,
struct btrfs_raid_bio,
stripe_cache);
__remove_rbio_from_cache(rbio);
}
spin_unlock_irqrestore(&table->cache_lock, flags);
}
/*
* remove all cached entries and free the hash table
* used by unmount
*/
void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info)
{
if (!info->stripe_hash_table)
return;
btrfs_clear_rbio_cache(info);
kvfree(info->stripe_hash_table);
info->stripe_hash_table = NULL;
}
/*
* insert an rbio into the stripe cache. It
* must have already been prepared by calling
* cache_rbio_pages
*
* If this rbio was already cached, it gets
* moved to the front of the lru.
*
* If the size of the rbio cache is too big, we
* prune an item.
*/
static void cache_rbio(struct btrfs_raid_bio *rbio)
{
struct btrfs_stripe_hash_table *table;
unsigned long flags;
if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags))
return;
table = rbio->bioc->fs_info->stripe_hash_table;
spin_lock_irqsave(&table->cache_lock, flags);
spin_lock(&rbio->bio_list_lock);
/* bump our ref if we were not in the list before */
if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags))
refcount_inc(&rbio->refs);
if (!list_empty(&rbio->stripe_cache)){
list_move(&rbio->stripe_cache, &table->stripe_cache);
} else {
list_add(&rbio->stripe_cache, &table->stripe_cache);
table->cache_size += 1;
}
spin_unlock(&rbio->bio_list_lock);
if (table->cache_size > RBIO_CACHE_SIZE) {
struct btrfs_raid_bio *found;
found = list_entry(table->stripe_cache.prev,
struct btrfs_raid_bio,
stripe_cache);
if (found != rbio)
__remove_rbio_from_cache(found);
}
spin_unlock_irqrestore(&table->cache_lock, flags);
}
/*
* helper function to run the xor_blocks api. It is only
* able to do MAX_XOR_BLOCKS at a time, so we need to
* loop through.
*/
static void run_xor(void **pages, int src_cnt, ssize_t len)
{
int src_off = 0;
int xor_src_cnt = 0;
void *dest = pages[src_cnt];
while(src_cnt > 0) {
xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS);
xor_blocks(xor_src_cnt, len, dest, pages + src_off);
src_cnt -= xor_src_cnt;
src_off += xor_src_cnt;
}
}
/*
* Returns true if the bio list inside this rbio covers an entire stripe (no
* rmw required).
*/
static int rbio_is_full(struct btrfs_raid_bio *rbio)
{
unsigned long flags;
unsigned long size = rbio->bio_list_bytes;
int ret = 1;
spin_lock_irqsave(&rbio->bio_list_lock, flags);
if (size != rbio->nr_data * rbio->stripe_len)
ret = 0;
BUG_ON(size > rbio->nr_data * rbio->stripe_len);
spin_unlock_irqrestore(&rbio->bio_list_lock, flags);
return ret;
}
/*
* returns 1 if it is safe to merge two rbios together.
* The merging is safe if the two rbios correspond to
* the same stripe and if they are both going in the same
* direction (read vs write), and if neither one is
* locked for final IO
*
* The caller is responsible for locking such that
* rmw_locked is safe to test
*/
static int rbio_can_merge(struct btrfs_raid_bio *last,
struct btrfs_raid_bio *cur)
{
if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) ||
test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags))
return 0;
/*
* we can't merge with cached rbios, since the
* idea is that when we merge the destination
* rbio is going to run our IO for us. We can
* steal from cached rbios though, other functions
* handle that.
*/
if (test_bit(RBIO_CACHE_BIT, &last->flags) ||
test_bit(RBIO_CACHE_BIT, &cur->flags))
return 0;
if (last->bioc->raid_map[0] != cur->bioc->raid_map[0])
return 0;
/* we can't merge with different operations */
if (last->operation != cur->operation)
return 0;
/*
* We've need read the full stripe from the drive.
* check and repair the parity and write the new results.
*
* We're not allowed to add any new bios to the
* bio list here, anyone else that wants to
* change this stripe needs to do their own rmw.
*/
if (last->operation == BTRFS_RBIO_PARITY_SCRUB)
return 0;
if (last->operation == BTRFS_RBIO_REBUILD_MISSING)
return 0;
if (last->operation == BTRFS_RBIO_READ_REBUILD) {
int fa = last->faila;
int fb = last->failb;
int cur_fa = cur->faila;
int cur_fb = cur->failb;
if (last->faila >= last->failb) {
fa = last->failb;
fb = last->faila;
}
if (cur->faila >= cur->failb) {
cur_fa = cur->failb;
cur_fb = cur->faila;
}
if (fa != cur_fa || fb != cur_fb)
return 0;
}
return 1;
}
static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio,
unsigned int stripe_nr,
unsigned int sector_nr)
{
ASSERT(stripe_nr < rbio->real_stripes);
ASSERT(sector_nr < rbio->stripe_nsectors);
return stripe_nr * rbio->stripe_nsectors + sector_nr;
}
/* Return a sector from rbio->stripe_sectors, not from the bio list */
static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio,
unsigned int stripe_nr,
unsigned int sector_nr)
{
return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr,
sector_nr)];
}
/* Grab a sector inside P stripe */
static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio,
unsigned int sector_nr)
{
return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr);
}
/* Grab a sector inside Q stripe, return NULL if not RAID6 */
static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio,
unsigned int sector_nr)
{
if (rbio->nr_data + 1 == rbio->real_stripes)
return NULL;
return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr);
}
/*
* The first stripe in the table for a logical address
* has the lock. rbios are added in one of three ways:
*
* 1) Nobody has the stripe locked yet. The rbio is given
* the lock and 0 is returned. The caller must start the IO
* themselves.
*
* 2) Someone has the stripe locked, but we're able to merge
* with the lock owner. The rbio is freed and the IO will
* start automatically along with the existing rbio. 1 is returned.
*
* 3) Someone has the stripe locked, but we're not able to merge.
* The rbio is added to the lock owner's plug list, or merged into
* an rbio already on the plug list. When the lock owner unlocks,
* the next rbio on the list is run and the IO is started automatically.
* 1 is returned
*
* If we return 0, the caller still owns the rbio and must continue with
* IO submission. If we return 1, the caller must assume the rbio has
* already been freed.
*/
static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio)
{
struct btrfs_stripe_hash *h;
struct btrfs_raid_bio *cur;
struct btrfs_raid_bio *pending;
unsigned long flags;
struct btrfs_raid_bio *freeit = NULL;
struct btrfs_raid_bio *cache_drop = NULL;
int ret = 0;
h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio);
spin_lock_irqsave(&h->lock, flags);
list_for_each_entry(cur, &h->hash_list, hash_list) {
if (cur->bioc->raid_map[0] != rbio->bioc->raid_map[0])
continue;
spin_lock(&cur->bio_list_lock);
/* Can we steal this cached rbio's pages? */
if (bio_list_empty(&cur->bio_list) &&
list_empty(&cur->plug_list) &&
test_bit(RBIO_CACHE_BIT, &cur->flags) &&
!test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) {
list_del_init(&cur->hash_list);
refcount_dec(&cur->refs);
steal_rbio(cur, rbio);
cache_drop = cur;
spin_unlock(&cur->bio_list_lock);
goto lockit;
}
/* Can we merge into the lock owner? */
if (rbio_can_merge(cur, rbio)) {
merge_rbio(cur, rbio);
spin_unlock(&cur->bio_list_lock);
freeit = rbio;
ret = 1;
goto out;
}
/*
* We couldn't merge with the running rbio, see if we can merge
* with the pending ones. We don't have to check for rmw_locked
* because there is no way they are inside finish_rmw right now
*/
list_for_each_entry(pending, &cur->plug_list, plug_list) {
if (rbio_can_merge(pending, rbio)) {
merge_rbio(pending, rbio);
spin_unlock(&cur->bio_list_lock);
freeit = rbio;
ret = 1;
goto out;
}
}
/*
* No merging, put us on the tail of the plug list, our rbio
* will be started with the currently running rbio unlocks
*/
list_add_tail(&rbio->plug_list, &cur->plug_list);
spin_unlock(&cur->bio_list_lock);
ret = 1;
goto out;
}
lockit:
refcount_inc(&rbio->refs);
list_add(&rbio->hash_list, &h->hash_list);
out:
spin_unlock_irqrestore(&h->lock, flags);
if (cache_drop)
remove_rbio_from_cache(cache_drop);
if (freeit)
__free_raid_bio(freeit);
return ret;
}
/*
* called as rmw or parity rebuild is completed. If the plug list has more
* rbios waiting for this stripe, the next one on the list will be started
*/
static noinline void unlock_stripe(struct btrfs_raid_bio *rbio)
{
int bucket;
struct btrfs_stripe_hash *h;
unsigned long flags;
int keep_cache = 0;
bucket = rbio_bucket(rbio);
h = rbio->bioc->fs_info->stripe_hash_table->table + bucket;
if (list_empty(&rbio->plug_list))
cache_rbio(rbio);
spin_lock_irqsave(&h->lock, flags);
spin_lock(&rbio->bio_list_lock);
if (!list_empty(&rbio->hash_list)) {
/*
* if we're still cached and there is no other IO
* to perform, just leave this rbio here for others
* to steal from later
*/
if (list_empty(&rbio->plug_list) &&
test_bit(RBIO_CACHE_BIT, &rbio->flags)) {
keep_cache = 1;
clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags);
BUG_ON(!bio_list_empty(&rbio->bio_list));
goto done;
}
list_del_init(&rbio->hash_list);
refcount_dec(&rbio->refs);
/*
* we use the plug list to hold all the rbios
* waiting for the chance to lock this stripe.
* hand the lock over to one of them.
*/
if (!list_empty(&rbio->plug_list)) {
struct btrfs_raid_bio *next;
struct list_head *head = rbio->plug_list.next;
next = list_entry(head, struct btrfs_raid_bio,
plug_list);
list_del_init(&rbio->plug_list);
list_add(&next->hash_list, &h->hash_list);
refcount_inc(&next->refs);
spin_unlock(&rbio->bio_list_lock);
spin_unlock_irqrestore(&h->lock, flags);
if (next->operation == BTRFS_RBIO_READ_REBUILD)
start_async_work(next, read_rebuild_work);
else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) {
steal_rbio(rbio, next);
start_async_work(next, read_rebuild_work);
} else if (next->operation == BTRFS_RBIO_WRITE) {
steal_rbio(rbio, next);
start_async_work(next, rmw_work);
} else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) {
steal_rbio(rbio, next);
start_async_work(next, scrub_parity_work);
}
goto done_nolock;
}
}
done:
spin_unlock(&rbio->bio_list_lock);
spin_unlock_irqrestore(&h->lock, flags);
done_nolock:
if (!keep_cache)
remove_rbio_from_cache(rbio);
}
static void __free_raid_bio(struct btrfs_raid_bio *rbio)
{
int i;
if (!refcount_dec_and_test(&rbio->refs))
return;
WARN_ON(!list_empty(&rbio->stripe_cache));
WARN_ON(!list_empty(&rbio->hash_list));
WARN_ON(!bio_list_empty(&rbio->bio_list));
for (i = 0; i < rbio->nr_pages; i++) {
if (rbio->stripe_pages[i]) {
__free_page(rbio->stripe_pages[i]);
rbio->stripe_pages[i] = NULL;
}
}
btrfs_put_bioc(rbio->bioc);
kfree(rbio);
}
static void rbio_endio_bio_list(struct bio *cur, blk_status_t err)
{
struct bio *next;
while (cur) {
next = cur->bi_next;
cur->bi_next = NULL;
cur->bi_status = err;
bio_endio(cur);
cur = next;
}
}
/*
* this frees the rbio and runs through all the bios in the
* bio_list and calls end_io on them
*/
static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err)
{
struct bio *cur = bio_list_get(&rbio->bio_list);
struct bio *extra;
if (rbio->generic_bio_cnt)
btrfs_bio_counter_sub(rbio->bioc->fs_info, rbio->generic_bio_cnt);
/*
* At this moment, rbio->bio_list is empty, however since rbio does not
* always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the
* hash list, rbio may be merged with others so that rbio->bio_list
* becomes non-empty.
* Once unlock_stripe() is done, rbio->bio_list will not be updated any
* more and we can call bio_endio() on all queued bios.
*/
unlock_stripe(rbio);
extra = bio_list_get(&rbio->bio_list);
__free_raid_bio(rbio);
rbio_endio_bio_list(cur, err);
if (extra)
rbio_endio_bio_list(extra, err);
}
/*
* end io function used by finish_rmw. When we finally
* get here, we've written a full stripe
*/
static void raid_write_end_io(struct bio *bio)
{
struct btrfs_raid_bio *rbio = bio->bi_private;
blk_status_t err = bio->bi_status;
int max_errors;
if (err)
fail_bio_stripe(rbio, bio);
bio_put(bio);
if (!atomic_dec_and_test(&rbio->stripes_pending))
return;
err = BLK_STS_OK;
/* OK, we have read all the stripes we need to. */
max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ?
0 : rbio->bioc->max_errors;
if (atomic_read(&rbio->error) > max_errors)
err = BLK_STS_IOERR;
rbio_orig_end_io(rbio, err);
}
/**
* Get a sector pointer specified by its @stripe_nr and @sector_nr
*
* @rbio: The raid bio
* @stripe_nr: Stripe number, valid range [0, real_stripe)
* @sector_nr: Sector number inside the stripe,
* valid range [0, stripe_nsectors)
* @bio_list_only: Whether to use sectors inside the bio list only.
*
* The read/modify/write code wants to reuse the original bio page as much
* as possible, and only use stripe_sectors as fallback.
*/
static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio,
int stripe_nr, int sector_nr,
bool bio_list_only)
{
struct sector_ptr *sector;
int index;