forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgup.c
3098 lines (2794 loc) · 87.5 KB
/
gup.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0-only
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/spinlock.h>
#include <linux/mm.h>
#include <linux/memremap.h>
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/secretmem.h>
#include <linux/sched/signal.h>
#include <linux/rwsem.h>
#include <linux/hugetlb.h>
#include <linux/migrate.h>
#include <linux/mm_inline.h>
#include <linux/sched/mm.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include "internal.h"
struct follow_page_context {
struct dev_pagemap *pgmap;
unsigned int page_mask;
};
/*
* Return the folio with ref appropriately incremented,
* or NULL if that failed.
*/
static inline struct folio *try_get_folio(struct page *page, int refs)
{
struct folio *folio;
retry:
folio = page_folio(page);
if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
return NULL;
if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
return NULL;
/*
* At this point we have a stable reference to the folio; but it
* could be that between calling page_folio() and the refcount
* increment, the folio was split, in which case we'd end up
* holding a reference on a folio that has nothing to do with the page
* we were given anymore.
* So now that the folio is stable, recheck that the page still
* belongs to this folio.
*/
if (unlikely(page_folio(page) != folio)) {
folio_put_refs(folio, refs);
goto retry;
}
return folio;
}
/**
* try_grab_folio() - Attempt to get or pin a folio.
* @page: pointer to page to be grabbed
* @refs: the value to (effectively) add to the folio's refcount
* @flags: gup flags: these are the FOLL_* flag values.
*
* "grab" names in this file mean, "look at flags to decide whether to use
* FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
*
* Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
* same time. (That's true throughout the get_user_pages*() and
* pin_user_pages*() APIs.) Cases:
*
* FOLL_GET: folio's refcount will be incremented by @refs.
*
* FOLL_PIN on large folios: folio's refcount will be incremented by
* @refs, and its compound_pincount will be incremented by @refs.
*
* FOLL_PIN on single-page folios: folio's refcount will be incremented by
* @refs * GUP_PIN_COUNTING_BIAS.
*
* Return: The folio containing @page (with refcount appropriately
* incremented) for success, or NULL upon failure. If neither FOLL_GET
* nor FOLL_PIN was set, that's considered failure, and furthermore,
* a likely bug in the caller, so a warning is also emitted.
*/
struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
{
if (flags & FOLL_GET)
return try_get_folio(page, refs);
else if (flags & FOLL_PIN) {
struct folio *folio;
/*
* Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
* right zone, so fail and let the caller fall back to the slow
* path.
*/
if (unlikely((flags & FOLL_LONGTERM) &&
!is_pinnable_page(page)))
return NULL;
/*
* CAUTION: Don't use compound_head() on the page before this
* point, the result won't be stable.
*/
folio = try_get_folio(page, refs);
if (!folio)
return NULL;
/*
* When pinning a large folio, use an exact count to track it.
*
* However, be sure to *also* increment the normal folio
* refcount field at least once, so that the folio really
* is pinned. That's why the refcount from the earlier
* try_get_folio() is left intact.
*/
if (folio_test_large(folio))
atomic_add(refs, folio_pincount_ptr(folio));
else
folio_ref_add(folio,
refs * (GUP_PIN_COUNTING_BIAS - 1));
node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
return folio;
}
WARN_ON_ONCE(1);
return NULL;
}
static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
{
if (flags & FOLL_PIN) {
node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
if (folio_test_large(folio))
atomic_sub(refs, folio_pincount_ptr(folio));
else
refs *= GUP_PIN_COUNTING_BIAS;
}
folio_put_refs(folio, refs);
}
/**
* try_grab_page() - elevate a page's refcount by a flag-dependent amount
* @page: pointer to page to be grabbed
* @flags: gup flags: these are the FOLL_* flag values.
*
* This might not do anything at all, depending on the flags argument.
*
* "grab" names in this file mean, "look at flags to decide whether to use
* FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
*
* Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
* time. Cases: please see the try_grab_folio() documentation, with
* "refs=1".
*
* Return: true for success, or if no action was required (if neither FOLL_PIN
* nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
* FOLL_PIN was set, but the page could not be grabbed.
*/
bool __must_check try_grab_page(struct page *page, unsigned int flags)
{
struct folio *folio = page_folio(page);
WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
return false;
if (flags & FOLL_GET)
folio_ref_inc(folio);
else if (flags & FOLL_PIN) {
/*
* Similar to try_grab_folio(): be sure to *also*
* increment the normal page refcount field at least once,
* so that the page really is pinned.
*/
if (folio_test_large(folio)) {
folio_ref_add(folio, 1);
atomic_add(1, folio_pincount_ptr(folio));
} else {
folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
}
node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
}
return true;
}
/**
* unpin_user_page() - release a dma-pinned page
* @page: pointer to page to be released
*
* Pages that were pinned via pin_user_pages*() must be released via either
* unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
* that such pages can be separately tracked and uniquely handled. In
* particular, interactions with RDMA and filesystems need special handling.
*/
void unpin_user_page(struct page *page)
{
gup_put_folio(page_folio(page), 1, FOLL_PIN);
}
EXPORT_SYMBOL(unpin_user_page);
static inline struct folio *gup_folio_range_next(struct page *start,
unsigned long npages, unsigned long i, unsigned int *ntails)
{
struct page *next = nth_page(start, i);
struct folio *folio = page_folio(next);
unsigned int nr = 1;
if (folio_test_large(folio))
nr = min_t(unsigned int, npages - i,
folio_nr_pages(folio) - folio_page_idx(folio, next));
*ntails = nr;
return folio;
}
static inline struct folio *gup_folio_next(struct page **list,
unsigned long npages, unsigned long i, unsigned int *ntails)
{
struct folio *folio = page_folio(list[i]);
unsigned int nr;
for (nr = i + 1; nr < npages; nr++) {
if (page_folio(list[nr]) != folio)
break;
}
*ntails = nr - i;
return folio;
}
/**
* unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
* @pages: array of pages to be maybe marked dirty, and definitely released.
* @npages: number of pages in the @pages array.
* @make_dirty: whether to mark the pages dirty
*
* "gup-pinned page" refers to a page that has had one of the get_user_pages()
* variants called on that page.
*
* For each page in the @pages array, make that page (or its head page, if a
* compound page) dirty, if @make_dirty is true, and if the page was previously
* listed as clean. In any case, releases all pages using unpin_user_page(),
* possibly via unpin_user_pages(), for the non-dirty case.
*
* Please see the unpin_user_page() documentation for details.
*
* set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
* required, then the caller should a) verify that this is really correct,
* because _lock() is usually required, and b) hand code it:
* set_page_dirty_lock(), unpin_user_page().
*
*/
void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
bool make_dirty)
{
unsigned long i;
struct folio *folio;
unsigned int nr;
if (!make_dirty) {
unpin_user_pages(pages, npages);
return;
}
for (i = 0; i < npages; i += nr) {
folio = gup_folio_next(pages, npages, i, &nr);
/*
* Checking PageDirty at this point may race with
* clear_page_dirty_for_io(), but that's OK. Two key
* cases:
*
* 1) This code sees the page as already dirty, so it
* skips the call to set_page_dirty(). That could happen
* because clear_page_dirty_for_io() called
* page_mkclean(), followed by set_page_dirty().
* However, now the page is going to get written back,
* which meets the original intention of setting it
* dirty, so all is well: clear_page_dirty_for_io() goes
* on to call TestClearPageDirty(), and write the page
* back.
*
* 2) This code sees the page as clean, so it calls
* set_page_dirty(). The page stays dirty, despite being
* written back, so it gets written back again in the
* next writeback cycle. This is harmless.
*/
if (!folio_test_dirty(folio)) {
folio_lock(folio);
folio_mark_dirty(folio);
folio_unlock(folio);
}
gup_put_folio(folio, nr, FOLL_PIN);
}
}
EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
/**
* unpin_user_page_range_dirty_lock() - release and optionally dirty
* gup-pinned page range
*
* @page: the starting page of a range maybe marked dirty, and definitely released.
* @npages: number of consecutive pages to release.
* @make_dirty: whether to mark the pages dirty
*
* "gup-pinned page range" refers to a range of pages that has had one of the
* pin_user_pages() variants called on that page.
*
* For the page ranges defined by [page .. page+npages], make that range (or
* its head pages, if a compound page) dirty, if @make_dirty is true, and if the
* page range was previously listed as clean.
*
* set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
* required, then the caller should a) verify that this is really correct,
* because _lock() is usually required, and b) hand code it:
* set_page_dirty_lock(), unpin_user_page().
*
*/
void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
bool make_dirty)
{
unsigned long i;
struct folio *folio;
unsigned int nr;
for (i = 0; i < npages; i += nr) {
folio = gup_folio_range_next(page, npages, i, &nr);
if (make_dirty && !folio_test_dirty(folio)) {
folio_lock(folio);
folio_mark_dirty(folio);
folio_unlock(folio);
}
gup_put_folio(folio, nr, FOLL_PIN);
}
}
EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
/**
* unpin_user_pages() - release an array of gup-pinned pages.
* @pages: array of pages to be marked dirty and released.
* @npages: number of pages in the @pages array.
*
* For each page in the @pages array, release the page using unpin_user_page().
*
* Please see the unpin_user_page() documentation for details.
*/
void unpin_user_pages(struct page **pages, unsigned long npages)
{
unsigned long i;
struct folio *folio;
unsigned int nr;
/*
* If this WARN_ON() fires, then the system *might* be leaking pages (by
* leaving them pinned), but probably not. More likely, gup/pup returned
* a hard -ERRNO error to the caller, who erroneously passed it here.
*/
if (WARN_ON(IS_ERR_VALUE(npages)))
return;
for (i = 0; i < npages; i += nr) {
folio = gup_folio_next(pages, npages, i, &nr);
gup_put_folio(folio, nr, FOLL_PIN);
}
}
EXPORT_SYMBOL(unpin_user_pages);
/*
* Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
* lifecycle. Avoid setting the bit unless necessary, or it might cause write
* cache bouncing on large SMP machines for concurrent pinned gups.
*/
static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
{
if (!test_bit(MMF_HAS_PINNED, mm_flags))
set_bit(MMF_HAS_PINNED, mm_flags);
}
#ifdef CONFIG_MMU
static struct page *no_page_table(struct vm_area_struct *vma,
unsigned int flags)
{
/*
* When core dumping an enormous anonymous area that nobody
* has touched so far, we don't want to allocate unnecessary pages or
* page tables. Return error instead of NULL to skip handle_mm_fault,
* then get_dump_page() will return NULL to leave a hole in the dump.
* But we can only make this optimization where a hole would surely
* be zero-filled if handle_mm_fault() actually did handle it.
*/
if ((flags & FOLL_DUMP) &&
(vma_is_anonymous(vma) || !vma->vm_ops->fault))
return ERR_PTR(-EFAULT);
return NULL;
}
static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
pte_t *pte, unsigned int flags)
{
/* No page to get reference */
if (flags & FOLL_GET)
return -EFAULT;
if (flags & FOLL_TOUCH) {
pte_t entry = *pte;
if (flags & FOLL_WRITE)
entry = pte_mkdirty(entry);
entry = pte_mkyoung(entry);
if (!pte_same(*pte, entry)) {
set_pte_at(vma->vm_mm, address, pte, entry);
update_mmu_cache(vma, address, pte);
}
}
/* Proper page table entry exists, but no corresponding struct page */
return -EEXIST;
}
/*
* FOLL_FORCE can write to even unwritable pte's, but only
* after we've gone through a COW cycle and they are dirty.
*/
static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
{
return pte_write(pte) ||
((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
}
static struct page *follow_page_pte(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmd, unsigned int flags,
struct dev_pagemap **pgmap)
{
struct mm_struct *mm = vma->vm_mm;
struct page *page;
spinlock_t *ptl;
pte_t *ptep, pte;
int ret;
/* FOLL_GET and FOLL_PIN are mutually exclusive. */
if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
(FOLL_PIN | FOLL_GET)))
return ERR_PTR(-EINVAL);
retry:
if (unlikely(pmd_bad(*pmd)))
return no_page_table(vma, flags);
ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
pte = *ptep;
if (!pte_present(pte)) {
swp_entry_t entry;
/*
* KSM's break_ksm() relies upon recognizing a ksm page
* even while it is being migrated, so for that case we
* need migration_entry_wait().
*/
if (likely(!(flags & FOLL_MIGRATION)))
goto no_page;
if (pte_none(pte))
goto no_page;
entry = pte_to_swp_entry(pte);
if (!is_migration_entry(entry))
goto no_page;
pte_unmap_unlock(ptep, ptl);
migration_entry_wait(mm, pmd, address);
goto retry;
}
if ((flags & FOLL_NUMA) && pte_protnone(pte))
goto no_page;
if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
pte_unmap_unlock(ptep, ptl);
return NULL;
}
page = vm_normal_page(vma, address, pte);
if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
/*
* Only return device mapping pages in the FOLL_GET or FOLL_PIN
* case since they are only valid while holding the pgmap
* reference.
*/
*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
if (*pgmap)
page = pte_page(pte);
else
goto no_page;
} else if (unlikely(!page)) {
if (flags & FOLL_DUMP) {
/* Avoid special (like zero) pages in core dumps */
page = ERR_PTR(-EFAULT);
goto out;
}
if (is_zero_pfn(pte_pfn(pte))) {
page = pte_page(pte);
} else {
ret = follow_pfn_pte(vma, address, ptep, flags);
page = ERR_PTR(ret);
goto out;
}
}
/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
if (unlikely(!try_grab_page(page, flags))) {
page = ERR_PTR(-ENOMEM);
goto out;
}
/*
* We need to make the page accessible if and only if we are going
* to access its content (the FOLL_PIN case). Please see
* Documentation/core-api/pin_user_pages.rst for details.
*/
if (flags & FOLL_PIN) {
ret = arch_make_page_accessible(page);
if (ret) {
unpin_user_page(page);
page = ERR_PTR(ret);
goto out;
}
}
if (flags & FOLL_TOUCH) {
if ((flags & FOLL_WRITE) &&
!pte_dirty(pte) && !PageDirty(page))
set_page_dirty(page);
/*
* pte_mkyoung() would be more correct here, but atomic care
* is needed to avoid losing the dirty bit: it is easier to use
* mark_page_accessed().
*/
mark_page_accessed(page);
}
out:
pte_unmap_unlock(ptep, ptl);
return page;
no_page:
pte_unmap_unlock(ptep, ptl);
if (!pte_none(pte))
return NULL;
return no_page_table(vma, flags);
}
static struct page *follow_pmd_mask(struct vm_area_struct *vma,
unsigned long address, pud_t *pudp,
unsigned int flags,
struct follow_page_context *ctx)
{
pmd_t *pmd, pmdval;
spinlock_t *ptl;
struct page *page;
struct mm_struct *mm = vma->vm_mm;
pmd = pmd_offset(pudp, address);
/*
* The READ_ONCE() will stabilize the pmdval in a register or
* on the stack so that it will stop changing under the code.
*/
pmdval = READ_ONCE(*pmd);
if (pmd_none(pmdval))
return no_page_table(vma, flags);
if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
page = follow_huge_pmd(mm, address, pmd, flags);
if (page)
return page;
return no_page_table(vma, flags);
}
if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
page = follow_huge_pd(vma, address,
__hugepd(pmd_val(pmdval)), flags,
PMD_SHIFT);
if (page)
return page;
return no_page_table(vma, flags);
}
retry:
if (!pmd_present(pmdval)) {
/*
* Should never reach here, if thp migration is not supported;
* Otherwise, it must be a thp migration entry.
*/
VM_BUG_ON(!thp_migration_supported() ||
!is_pmd_migration_entry(pmdval));
if (likely(!(flags & FOLL_MIGRATION)))
return no_page_table(vma, flags);
pmd_migration_entry_wait(mm, pmd);
pmdval = READ_ONCE(*pmd);
/*
* MADV_DONTNEED may convert the pmd to null because
* mmap_lock is held in read mode
*/
if (pmd_none(pmdval))
return no_page_table(vma, flags);
goto retry;
}
if (pmd_devmap(pmdval)) {
ptl = pmd_lock(mm, pmd);
page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
spin_unlock(ptl);
if (page)
return page;
}
if (likely(!pmd_trans_huge(pmdval)))
return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
return no_page_table(vma, flags);
retry_locked:
ptl = pmd_lock(mm, pmd);
if (unlikely(pmd_none(*pmd))) {
spin_unlock(ptl);
return no_page_table(vma, flags);
}
if (unlikely(!pmd_present(*pmd))) {
spin_unlock(ptl);
if (likely(!(flags & FOLL_MIGRATION)))
return no_page_table(vma, flags);
pmd_migration_entry_wait(mm, pmd);
goto retry_locked;
}
if (unlikely(!pmd_trans_huge(*pmd))) {
spin_unlock(ptl);
return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
}
if (flags & FOLL_SPLIT_PMD) {
int ret;
page = pmd_page(*pmd);
if (is_huge_zero_page(page)) {
spin_unlock(ptl);
ret = 0;
split_huge_pmd(vma, pmd, address);
if (pmd_trans_unstable(pmd))
ret = -EBUSY;
} else {
spin_unlock(ptl);
split_huge_pmd(vma, pmd, address);
ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
}
return ret ? ERR_PTR(ret) :
follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
}
page = follow_trans_huge_pmd(vma, address, pmd, flags);
spin_unlock(ptl);
ctx->page_mask = HPAGE_PMD_NR - 1;
return page;
}
static struct page *follow_pud_mask(struct vm_area_struct *vma,
unsigned long address, p4d_t *p4dp,
unsigned int flags,
struct follow_page_context *ctx)
{
pud_t *pud;
spinlock_t *ptl;
struct page *page;
struct mm_struct *mm = vma->vm_mm;
pud = pud_offset(p4dp, address);
if (pud_none(*pud))
return no_page_table(vma, flags);
if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
page = follow_huge_pud(mm, address, pud, flags);
if (page)
return page;
return no_page_table(vma, flags);
}
if (is_hugepd(__hugepd(pud_val(*pud)))) {
page = follow_huge_pd(vma, address,
__hugepd(pud_val(*pud)), flags,
PUD_SHIFT);
if (page)
return page;
return no_page_table(vma, flags);
}
if (pud_devmap(*pud)) {
ptl = pud_lock(mm, pud);
page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
spin_unlock(ptl);
if (page)
return page;
}
if (unlikely(pud_bad(*pud)))
return no_page_table(vma, flags);
return follow_pmd_mask(vma, address, pud, flags, ctx);
}
static struct page *follow_p4d_mask(struct vm_area_struct *vma,
unsigned long address, pgd_t *pgdp,
unsigned int flags,
struct follow_page_context *ctx)
{
p4d_t *p4d;
struct page *page;
p4d = p4d_offset(pgdp, address);
if (p4d_none(*p4d))
return no_page_table(vma, flags);
BUILD_BUG_ON(p4d_huge(*p4d));
if (unlikely(p4d_bad(*p4d)))
return no_page_table(vma, flags);
if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
page = follow_huge_pd(vma, address,
__hugepd(p4d_val(*p4d)), flags,
P4D_SHIFT);
if (page)
return page;
return no_page_table(vma, flags);
}
return follow_pud_mask(vma, address, p4d, flags, ctx);
}
/**
* follow_page_mask - look up a page descriptor from a user-virtual address
* @vma: vm_area_struct mapping @address
* @address: virtual address to look up
* @flags: flags modifying lookup behaviour
* @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
* pointer to output page_mask
*
* @flags can have FOLL_ flags set, defined in <linux/mm.h>
*
* When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
* the device's dev_pagemap metadata to avoid repeating expensive lookups.
*
* On output, the @ctx->page_mask is set according to the size of the page.
*
* Return: the mapped (struct page *), %NULL if no mapping exists, or
* an error pointer if there is a mapping to something not represented
* by a page descriptor (see also vm_normal_page()).
*/
static struct page *follow_page_mask(struct vm_area_struct *vma,
unsigned long address, unsigned int flags,
struct follow_page_context *ctx)
{
pgd_t *pgd;
struct page *page;
struct mm_struct *mm = vma->vm_mm;
ctx->page_mask = 0;
/* make this handle hugepd */
page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
if (!IS_ERR(page)) {
WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
return page;
}
pgd = pgd_offset(mm, address);
if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
return no_page_table(vma, flags);
if (pgd_huge(*pgd)) {
page = follow_huge_pgd(mm, address, pgd, flags);
if (page)
return page;
return no_page_table(vma, flags);
}
if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
page = follow_huge_pd(vma, address,
__hugepd(pgd_val(*pgd)), flags,
PGDIR_SHIFT);
if (page)
return page;
return no_page_table(vma, flags);
}
return follow_p4d_mask(vma, address, pgd, flags, ctx);
}
struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
unsigned int foll_flags)
{
struct follow_page_context ctx = { NULL };
struct page *page;
if (vma_is_secretmem(vma))
return NULL;
page = follow_page_mask(vma, address, foll_flags, &ctx);
if (ctx.pgmap)
put_dev_pagemap(ctx.pgmap);
return page;
}
static int get_gate_page(struct mm_struct *mm, unsigned long address,
unsigned int gup_flags, struct vm_area_struct **vma,
struct page **page)
{
pgd_t *pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
pte_t *pte;
int ret = -EFAULT;
/* user gate pages are read-only */
if (gup_flags & FOLL_WRITE)
return -EFAULT;
if (address > TASK_SIZE)
pgd = pgd_offset_k(address);
else
pgd = pgd_offset_gate(mm, address);
if (pgd_none(*pgd))
return -EFAULT;
p4d = p4d_offset(pgd, address);
if (p4d_none(*p4d))
return -EFAULT;
pud = pud_offset(p4d, address);
if (pud_none(*pud))
return -EFAULT;
pmd = pmd_offset(pud, address);
if (!pmd_present(*pmd))
return -EFAULT;
VM_BUG_ON(pmd_trans_huge(*pmd));
pte = pte_offset_map(pmd, address);
if (pte_none(*pte))
goto unmap;
*vma = get_gate_vma(mm);
if (!page)
goto out;
*page = vm_normal_page(*vma, address, *pte);
if (!*page) {
if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
goto unmap;
*page = pte_page(*pte);
}
if (unlikely(!try_grab_page(*page, gup_flags))) {
ret = -ENOMEM;
goto unmap;
}
out:
ret = 0;
unmap:
pte_unmap(pte);
return ret;
}
/*
* mmap_lock must be held on entry. If @locked != NULL and *@flags
* does not include FOLL_NOWAIT, the mmap_lock may be released. If it
* is, *@locked will be set to 0 and -EBUSY returned.
*/
static int faultin_page(struct vm_area_struct *vma,
unsigned long address, unsigned int *flags, int *locked)
{
unsigned int fault_flags = 0;
vm_fault_t ret;
if (*flags & FOLL_NOFAULT)
return -EFAULT;
if (*flags & FOLL_WRITE)
fault_flags |= FAULT_FLAG_WRITE;
if (*flags & FOLL_REMOTE)
fault_flags |= FAULT_FLAG_REMOTE;
if (locked)
fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
if (*flags & FOLL_NOWAIT)
fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
if (*flags & FOLL_TRIED) {
/*
* Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
* can co-exist
*/
fault_flags |= FAULT_FLAG_TRIED;
}
ret = handle_mm_fault(vma, address, fault_flags, NULL);
if (ret & VM_FAULT_ERROR) {
int err = vm_fault_to_errno(ret, *flags);
if (err)
return err;
BUG();
}
if (ret & VM_FAULT_RETRY) {
if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
*locked = 0;
return -EBUSY;
}
/*
* The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
* necessary, even if maybe_mkwrite decided not to set pte_write. We
* can thus safely do subsequent page lookups as if they were reads.
* But only do so when looping for pte_write is futile: in some cases
* userspace may also be wanting to write to the gotten user page,
* which a read fault here might prevent (a readonly page might get
* reCOWed by userspace write).
*/
if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
*flags |= FOLL_COW;
return 0;
}
static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
{
vm_flags_t vm_flags = vma->vm_flags;
int write = (gup_flags & FOLL_WRITE);
int foreign = (gup_flags & FOLL_REMOTE);
if (vm_flags & (VM_IO | VM_PFNMAP))
return -EFAULT;
if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
return -EFAULT;
if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
return -EOPNOTSUPP;
if (vma_is_secretmem(vma))
return -EFAULT;
if (write) {
if (!(vm_flags & VM_WRITE)) {
if (!(gup_flags & FOLL_FORCE))
return -EFAULT;
/*
* We used to let the write,force case do COW in a
* VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
* set a breakpoint in a read-only mapping of an
* executable, without corrupting the file (yet only
* when that file had been opened for writing!).
* Anon pages in shared mappings are surprising: now
* just reject it.
*/
if (!is_cow_mapping(vm_flags))
return -EFAULT;
}
} else if (!(vm_flags & VM_READ)) {
if (!(gup_flags & FOLL_FORCE))
return -EFAULT;
/*
* Is there actually any vma we can reach here which does not
* have VM_MAYREAD set?
*/
if (!(vm_flags & VM_MAYREAD))
return -EFAULT;
}
/*
* gups are always data accesses, not instruction
* fetches, so execute=false here
*/
if (!arch_vma_access_permitted(vma, write, false, foreign))
return -EFAULT;
return 0;
}
/**
* __get_user_pages() - pin user pages in memory
* @mm: mm_struct of target mm
* @start: starting user address
* @nr_pages: number of pages from start to pin
* @gup_flags: flags modifying pin behaviour
* @pages: array that receives pointers to the pages pinned.
* Should be at least nr_pages long. Or NULL, if caller
* only intends to ensure the pages are faulted in.
* @vmas: array of pointers to vmas corresponding to each page.
* Or NULL if the caller does not require them.
* @locked: whether we're still with the mmap_lock held
*
* Returns either number of pages pinned (which may be less than the
* number requested), or an error. Details about the return value:
*
* -- If nr_pages is 0, returns 0.
* -- If nr_pages is >0, but no pages were pinned, returns -errno.
* -- If nr_pages is >0, and some pages were pinned, returns the number of
* pages pinned. Again, this may be less than nr_pages.
* -- 0 return value is possible when the fault would need to be retried.
*
* The caller is responsible for releasing returned @pages, via put_page().
*
* @vmas are valid only as long as mmap_lock is held.
*
* Must be called with mmap_lock held. It may be released. See below.
*
* __get_user_pages walks a process's page tables and takes a reference to
* each struct page that each user address corresponds to at a given
* instant. That is, it takes the page that would be accessed if a user
* thread accesses the given user virtual address at that instant.
*
* This does not guarantee that the page exists in the user mappings when
* __get_user_pages returns, and there may even be a completely different
* page there in some cases (eg. if mmapped pagecache has been invalidated
* and subsequently re faulted). However it does guarantee that the page