forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 1
/
blk-core.c
2415 lines (2066 loc) · 64 KB
/
blk-core.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (C) 1991, 1992 Linus Torvalds
* Copyright (C) 1994, Karl Keyte: Added support for disk statistics
* Elevator latency, (C) 2000 Andrea Arcangeli <[email protected]> SuSE
* Queue request tables / lock, selectable elevator, Jens Axboe <[email protected]>
* kernel-doc documentation started by NeilBrown <[email protected]>
* - July2000
* bio rewrite, highmem i/o, etc, Jens Axboe <[email protected]> - may 2001
*/
/*
* This handles all read/write requests to block devices
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/backing-dev.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/highmem.h>
#include <linux/mm.h>
#include <linux/kernel_stat.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/completion.h>
#include <linux/slab.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include <linux/task_io_accounting_ops.h>
#include <linux/fault-inject.h>
#define CREATE_TRACE_POINTS
#include <trace/events/block.h>
#include "blk.h"
EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
static int __make_request(struct request_queue *q, struct bio *bio);
/*
* For the allocated request tables
*/
static struct kmem_cache *request_cachep;
/*
* For queue allocation
*/
struct kmem_cache *blk_requestq_cachep;
/*
* Controlling structure to kblockd
*/
static struct workqueue_struct *kblockd_workqueue;
static void drive_stat_acct(struct request *rq, int new_io)
{
struct hd_struct *part;
int rw = rq_data_dir(rq);
int cpu;
if (!blk_do_io_stat(rq))
return;
cpu = part_stat_lock();
part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
if (!new_io)
part_stat_inc(cpu, part, merges[rw]);
else {
part_round_stats(cpu, part);
part_inc_in_flight(part);
}
part_stat_unlock();
}
void blk_queue_congestion_threshold(struct request_queue *q)
{
int nr;
nr = q->nr_requests - (q->nr_requests / 8) + 1;
if (nr > q->nr_requests)
nr = q->nr_requests;
q->nr_congestion_on = nr;
nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
if (nr < 1)
nr = 1;
q->nr_congestion_off = nr;
}
/**
* blk_get_backing_dev_info - get the address of a queue's backing_dev_info
* @bdev: device
*
* Locates the passed device's request queue and returns the address of its
* backing_dev_info
*
* Will return NULL if the request queue cannot be located.
*/
struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
{
struct backing_dev_info *ret = NULL;
struct request_queue *q = bdev_get_queue(bdev);
if (q)
ret = &q->backing_dev_info;
return ret;
}
EXPORT_SYMBOL(blk_get_backing_dev_info);
void blk_rq_init(struct request_queue *q, struct request *rq)
{
memset(rq, 0, sizeof(*rq));
INIT_LIST_HEAD(&rq->queuelist);
INIT_LIST_HEAD(&rq->timeout_list);
rq->cpu = -1;
rq->q = q;
rq->__sector = (sector_t) -1;
INIT_HLIST_NODE(&rq->hash);
RB_CLEAR_NODE(&rq->rb_node);
rq->cmd = rq->__cmd;
rq->cmd_len = BLK_MAX_CDB;
rq->tag = -1;
rq->ref_count = 1;
rq->start_time = jiffies;
}
EXPORT_SYMBOL(blk_rq_init);
static void req_bio_endio(struct request *rq, struct bio *bio,
unsigned int nbytes, int error)
{
struct request_queue *q = rq->q;
if (&q->bar_rq != rq) {
if (error)
clear_bit(BIO_UPTODATE, &bio->bi_flags);
else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
error = -EIO;
if (unlikely(nbytes > bio->bi_size)) {
printk(KERN_ERR "%s: want %u bytes done, %u left\n",
__func__, nbytes, bio->bi_size);
nbytes = bio->bi_size;
}
if (unlikely(rq->cmd_flags & REQ_QUIET))
set_bit(BIO_QUIET, &bio->bi_flags);
bio->bi_size -= nbytes;
bio->bi_sector += (nbytes >> 9);
if (bio_integrity(bio))
bio_integrity_advance(bio, nbytes);
if (bio->bi_size == 0)
bio_endio(bio, error);
} else {
/*
* Okay, this is the barrier request in progress, just
* record the error;
*/
if (error && !q->orderr)
q->orderr = error;
}
}
void blk_dump_rq_flags(struct request *rq, char *msg)
{
int bit;
printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
rq->cmd_flags);
printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
(unsigned long long)blk_rq_pos(rq),
blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
if (blk_pc_request(rq)) {
printk(KERN_INFO " cdb: ");
for (bit = 0; bit < BLK_MAX_CDB; bit++)
printk("%02x ", rq->cmd[bit]);
printk("\n");
}
}
EXPORT_SYMBOL(blk_dump_rq_flags);
/*
* "plug" the device if there are no outstanding requests: this will
* force the transfer to start only after we have put all the requests
* on the list.
*
* This is called with interrupts off and no requests on the queue and
* with the queue lock held.
*/
void blk_plug_device(struct request_queue *q)
{
WARN_ON(!irqs_disabled());
/*
* don't plug a stopped queue, it must be paired with blk_start_queue()
* which will restart the queueing
*/
if (blk_queue_stopped(q))
return;
if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
trace_block_plug(q);
}
}
EXPORT_SYMBOL(blk_plug_device);
/**
* blk_plug_device_unlocked - plug a device without queue lock held
* @q: The &struct request_queue to plug
*
* Description:
* Like @blk_plug_device(), but grabs the queue lock and disables
* interrupts.
**/
void blk_plug_device_unlocked(struct request_queue *q)
{
unsigned long flags;
spin_lock_irqsave(q->queue_lock, flags);
blk_plug_device(q);
spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL(blk_plug_device_unlocked);
/*
* remove the queue from the plugged list, if present. called with
* queue lock held and interrupts disabled.
*/
int blk_remove_plug(struct request_queue *q)
{
WARN_ON(!irqs_disabled());
if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
return 0;
del_timer(&q->unplug_timer);
return 1;
}
EXPORT_SYMBOL(blk_remove_plug);
/*
* remove the plug and let it rip..
*/
void __generic_unplug_device(struct request_queue *q)
{
if (unlikely(blk_queue_stopped(q)))
return;
if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
return;
q->request_fn(q);
}
/**
* generic_unplug_device - fire a request queue
* @q: The &struct request_queue in question
*
* Description:
* Linux uses plugging to build bigger requests queues before letting
* the device have at them. If a queue is plugged, the I/O scheduler
* is still adding and merging requests on the queue. Once the queue
* gets unplugged, the request_fn defined for the queue is invoked and
* transfers started.
**/
void generic_unplug_device(struct request_queue *q)
{
if (blk_queue_plugged(q)) {
spin_lock_irq(q->queue_lock);
__generic_unplug_device(q);
spin_unlock_irq(q->queue_lock);
}
}
EXPORT_SYMBOL(generic_unplug_device);
static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
struct page *page)
{
struct request_queue *q = bdi->unplug_io_data;
blk_unplug(q);
}
void blk_unplug_work(struct work_struct *work)
{
struct request_queue *q =
container_of(work, struct request_queue, unplug_work);
trace_block_unplug_io(q);
q->unplug_fn(q);
}
void blk_unplug_timeout(unsigned long data)
{
struct request_queue *q = (struct request_queue *)data;
trace_block_unplug_timer(q);
kblockd_schedule_work(q, &q->unplug_work);
}
void blk_unplug(struct request_queue *q)
{
/*
* devices don't necessarily have an ->unplug_fn defined
*/
if (q->unplug_fn) {
trace_block_unplug_io(q);
q->unplug_fn(q);
}
}
EXPORT_SYMBOL(blk_unplug);
/**
* blk_start_queue - restart a previously stopped queue
* @q: The &struct request_queue in question
*
* Description:
* blk_start_queue() will clear the stop flag on the queue, and call
* the request_fn for the queue if it was in a stopped state when
* entered. Also see blk_stop_queue(). Queue lock must be held.
**/
void blk_start_queue(struct request_queue *q)
{
WARN_ON(!irqs_disabled());
queue_flag_clear(QUEUE_FLAG_STOPPED, q);
__blk_run_queue(q);
}
EXPORT_SYMBOL(blk_start_queue);
/**
* blk_stop_queue - stop a queue
* @q: The &struct request_queue in question
*
* Description:
* The Linux block layer assumes that a block driver will consume all
* entries on the request queue when the request_fn strategy is called.
* Often this will not happen, because of hardware limitations (queue
* depth settings). If a device driver gets a 'queue full' response,
* or if it simply chooses not to queue more I/O at one point, it can
* call this function to prevent the request_fn from being called until
* the driver has signalled it's ready to go again. This happens by calling
* blk_start_queue() to restart queue operations. Queue lock must be held.
**/
void blk_stop_queue(struct request_queue *q)
{
blk_remove_plug(q);
queue_flag_set(QUEUE_FLAG_STOPPED, q);
}
EXPORT_SYMBOL(blk_stop_queue);
/**
* blk_sync_queue - cancel any pending callbacks on a queue
* @q: the queue
*
* Description:
* The block layer may perform asynchronous callback activity
* on a queue, such as calling the unplug function after a timeout.
* A block device may call blk_sync_queue to ensure that any
* such activity is cancelled, thus allowing it to release resources
* that the callbacks might use. The caller must already have made sure
* that its ->make_request_fn will not re-add plugging prior to calling
* this function.
*
*/
void blk_sync_queue(struct request_queue *q)
{
del_timer_sync(&q->unplug_timer);
del_timer_sync(&q->timeout);
cancel_work_sync(&q->unplug_work);
}
EXPORT_SYMBOL(blk_sync_queue);
/**
* __blk_run_queue - run a single device queue
* @q: The queue to run
*
* Description:
* See @blk_run_queue. This variant must be called with the queue lock
* held and interrupts disabled.
*
*/
void __blk_run_queue(struct request_queue *q)
{
blk_remove_plug(q);
if (unlikely(blk_queue_stopped(q)))
return;
if (elv_queue_empty(q))
return;
/*
* Only recurse once to avoid overrunning the stack, let the unplug
* handling reinvoke the handler shortly if we already got there.
*/
if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
q->request_fn(q);
queue_flag_clear(QUEUE_FLAG_REENTER, q);
} else {
queue_flag_set(QUEUE_FLAG_PLUGGED, q);
kblockd_schedule_work(q, &q->unplug_work);
}
}
EXPORT_SYMBOL(__blk_run_queue);
/**
* blk_run_queue - run a single device queue
* @q: The queue to run
*
* Description:
* Invoke request handling on this queue, if it has pending work to do.
* May be used to restart queueing when a request has completed.
*/
void blk_run_queue(struct request_queue *q)
{
unsigned long flags;
spin_lock_irqsave(q->queue_lock, flags);
__blk_run_queue(q);
spin_unlock_irqrestore(q->queue_lock, flags);
}
EXPORT_SYMBOL(blk_run_queue);
void blk_put_queue(struct request_queue *q)
{
kobject_put(&q->kobj);
}
void blk_cleanup_queue(struct request_queue *q)
{
/*
* We know we have process context here, so we can be a little
* cautious and ensure that pending block actions on this device
* are done before moving on. Going into this function, we should
* not have processes doing IO to this device.
*/
blk_sync_queue(q);
mutex_lock(&q->sysfs_lock);
queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
mutex_unlock(&q->sysfs_lock);
if (q->elevator)
elevator_exit(q->elevator);
blk_put_queue(q);
}
EXPORT_SYMBOL(blk_cleanup_queue);
static int blk_init_free_list(struct request_queue *q)
{
struct request_list *rl = &q->rq;
rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
rl->elvpriv = 0;
init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
mempool_free_slab, request_cachep, q->node);
if (!rl->rq_pool)
return -ENOMEM;
return 0;
}
struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
{
return blk_alloc_queue_node(gfp_mask, -1);
}
EXPORT_SYMBOL(blk_alloc_queue);
struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
{
struct request_queue *q;
int err;
q = kmem_cache_alloc_node(blk_requestq_cachep,
gfp_mask | __GFP_ZERO, node_id);
if (!q)
return NULL;
q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
q->backing_dev_info.unplug_io_data = q;
q->backing_dev_info.ra_pages =
(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
q->backing_dev_info.state = 0;
q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
err = bdi_init(&q->backing_dev_info);
if (err) {
kmem_cache_free(blk_requestq_cachep, q);
return NULL;
}
init_timer(&q->unplug_timer);
setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
INIT_LIST_HEAD(&q->timeout_list);
INIT_WORK(&q->unplug_work, blk_unplug_work);
kobject_init(&q->kobj, &blk_queue_ktype);
mutex_init(&q->sysfs_lock);
spin_lock_init(&q->__queue_lock);
return q;
}
EXPORT_SYMBOL(blk_alloc_queue_node);
/**
* blk_init_queue - prepare a request queue for use with a block device
* @rfn: The function to be called to process requests that have been
* placed on the queue.
* @lock: Request queue spin lock
*
* Description:
* If a block device wishes to use the standard request handling procedures,
* which sorts requests and coalesces adjacent requests, then it must
* call blk_init_queue(). The function @rfn will be called when there
* are requests on the queue that need to be processed. If the device
* supports plugging, then @rfn may not be called immediately when requests
* are available on the queue, but may be called at some time later instead.
* Plugged queues are generally unplugged when a buffer belonging to one
* of the requests on the queue is needed, or due to memory pressure.
*
* @rfn is not required, or even expected, to remove all requests off the
* queue, but only as many as it can handle at a time. If it does leave
* requests on the queue, it is responsible for arranging that the requests
* get dealt with eventually.
*
* The queue spin lock must be held while manipulating the requests on the
* request queue; this lock will be taken also from interrupt context, so irq
* disabling is needed for it.
*
* Function returns a pointer to the initialized request queue, or %NULL if
* it didn't succeed.
*
* Note:
* blk_init_queue() must be paired with a blk_cleanup_queue() call
* when the block device is deactivated (such as at module unload).
**/
struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
{
return blk_init_queue_node(rfn, lock, -1);
}
EXPORT_SYMBOL(blk_init_queue);
struct request_queue *
blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
{
struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
if (!q)
return NULL;
q->node = node_id;
if (blk_init_free_list(q)) {
kmem_cache_free(blk_requestq_cachep, q);
return NULL;
}
/*
* if caller didn't supply a lock, they get per-queue locking with
* our embedded lock
*/
if (!lock)
lock = &q->__queue_lock;
q->request_fn = rfn;
q->prep_rq_fn = NULL;
q->unplug_fn = generic_unplug_device;
q->queue_flags = QUEUE_FLAG_DEFAULT;
q->queue_lock = lock;
/*
* This also sets hw/phys segments, boundary and size
*/
blk_queue_make_request(q, __make_request);
q->sg_reserved_size = INT_MAX;
/*
* all done
*/
if (!elevator_init(q, NULL)) {
blk_queue_congestion_threshold(q);
return q;
}
blk_put_queue(q);
return NULL;
}
EXPORT_SYMBOL(blk_init_queue_node);
int blk_get_queue(struct request_queue *q)
{
if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
kobject_get(&q->kobj);
return 0;
}
return 1;
}
static inline void blk_free_request(struct request_queue *q, struct request *rq)
{
if (rq->cmd_flags & REQ_ELVPRIV)
elv_put_request(q, rq);
mempool_free(rq, q->rq.rq_pool);
}
static struct request *
blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
{
struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
if (!rq)
return NULL;
blk_rq_init(q, rq);
rq->cmd_flags = flags | REQ_ALLOCED;
if (priv) {
if (unlikely(elv_set_request(q, rq, gfp_mask))) {
mempool_free(rq, q->rq.rq_pool);
return NULL;
}
rq->cmd_flags |= REQ_ELVPRIV;
}
return rq;
}
/*
* ioc_batching returns true if the ioc is a valid batching request and
* should be given priority access to a request.
*/
static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
{
if (!ioc)
return 0;
/*
* Make sure the process is able to allocate at least 1 request
* even if the batch times out, otherwise we could theoretically
* lose wakeups.
*/
return ioc->nr_batch_requests == q->nr_batching ||
(ioc->nr_batch_requests > 0
&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
}
/*
* ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
* will cause the process to be a "batcher" on all queues in the system. This
* is the behaviour we want though - once it gets a wakeup it should be given
* a nice run.
*/
static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
{
if (!ioc || ioc_batching(q, ioc))
return;
ioc->nr_batch_requests = q->nr_batching;
ioc->last_waited = jiffies;
}
static void __freed_request(struct request_queue *q, int sync)
{
struct request_list *rl = &q->rq;
if (rl->count[sync] < queue_congestion_off_threshold(q))
blk_clear_queue_congested(q, sync);
if (rl->count[sync] + 1 <= q->nr_requests) {
if (waitqueue_active(&rl->wait[sync]))
wake_up(&rl->wait[sync]);
blk_clear_queue_full(q, sync);
}
}
/*
* A request has just been released. Account for it, update the full and
* congestion status, wake up any waiters. Called under q->queue_lock.
*/
static void freed_request(struct request_queue *q, int sync, int priv)
{
struct request_list *rl = &q->rq;
rl->count[sync]--;
if (priv)
rl->elvpriv--;
__freed_request(q, sync);
if (unlikely(rl->starved[sync ^ 1]))
__freed_request(q, sync ^ 1);
}
/*
* Get a free request, queue_lock must be held.
* Returns NULL on failure, with queue_lock held.
* Returns !NULL on success, with queue_lock *not held*.
*/
static struct request *get_request(struct request_queue *q, int rw_flags,
struct bio *bio, gfp_t gfp_mask)
{
struct request *rq = NULL;
struct request_list *rl = &q->rq;
struct io_context *ioc = NULL;
const bool is_sync = rw_is_sync(rw_flags) != 0;
int may_queue, priv;
may_queue = elv_may_queue(q, rw_flags);
if (may_queue == ELV_MQUEUE_NO)
goto rq_starved;
if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
if (rl->count[is_sync]+1 >= q->nr_requests) {
ioc = current_io_context(GFP_ATOMIC, q->node);
/*
* The queue will fill after this allocation, so set
* it as full, and mark this process as "batching".
* This process will be allowed to complete a batch of
* requests, others will be blocked.
*/
if (!blk_queue_full(q, is_sync)) {
ioc_set_batching(q, ioc);
blk_set_queue_full(q, is_sync);
} else {
if (may_queue != ELV_MQUEUE_MUST
&& !ioc_batching(q, ioc)) {
/*
* The queue is full and the allocating
* process is not a "batcher", and not
* exempted by the IO scheduler
*/
goto out;
}
}
}
blk_set_queue_congested(q, is_sync);
}
/*
* Only allow batching queuers to allocate up to 50% over the defined
* limit of requests, otherwise we could have thousands of requests
* allocated with any setting of ->nr_requests
*/
if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
goto out;
rl->count[is_sync]++;
rl->starved[is_sync] = 0;
priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
if (priv)
rl->elvpriv++;
if (blk_queue_io_stat(q))
rw_flags |= REQ_IO_STAT;
spin_unlock_irq(q->queue_lock);
rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
if (unlikely(!rq)) {
/*
* Allocation failed presumably due to memory. Undo anything
* we might have messed up.
*
* Allocating task should really be put onto the front of the
* wait queue, but this is pretty rare.
*/
spin_lock_irq(q->queue_lock);
freed_request(q, is_sync, priv);
/*
* in the very unlikely event that allocation failed and no
* requests for this direction was pending, mark us starved
* so that freeing of a request in the other direction will
* notice us. another possible fix would be to split the
* rq mempool into READ and WRITE
*/
rq_starved:
if (unlikely(rl->count[is_sync] == 0))
rl->starved[is_sync] = 1;
goto out;
}
/*
* ioc may be NULL here, and ioc_batching will be false. That's
* OK, if the queue is under the request limit then requests need
* not count toward the nr_batch_requests limit. There will always
* be some limit enforced by BLK_BATCH_TIME.
*/
if (ioc_batching(q, ioc))
ioc->nr_batch_requests--;
trace_block_getrq(q, bio, rw_flags & 1);
out:
return rq;
}
/*
* No available requests for this queue, unplug the device and wait for some
* requests to become available.
*
* Called with q->queue_lock held, and returns with it unlocked.
*/
static struct request *get_request_wait(struct request_queue *q, int rw_flags,
struct bio *bio)
{
const bool is_sync = rw_is_sync(rw_flags) != 0;
struct request *rq;
rq = get_request(q, rw_flags, bio, GFP_NOIO);
while (!rq) {
DEFINE_WAIT(wait);
struct io_context *ioc;
struct request_list *rl = &q->rq;
prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
TASK_UNINTERRUPTIBLE);
trace_block_sleeprq(q, bio, rw_flags & 1);
__generic_unplug_device(q);
spin_unlock_irq(q->queue_lock);
io_schedule();
/*
* After sleeping, we become a "batching" process and
* will be able to allocate at least one request, and
* up to a big batch of them for a small period time.
* See ioc_batching, ioc_set_batching
*/
ioc = current_io_context(GFP_NOIO, q->node);
ioc_set_batching(q, ioc);
spin_lock_irq(q->queue_lock);
finish_wait(&rl->wait[is_sync], &wait);
rq = get_request(q, rw_flags, bio, GFP_NOIO);
};
return rq;
}
struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
{
struct request *rq;
BUG_ON(rw != READ && rw != WRITE);
spin_lock_irq(q->queue_lock);
if (gfp_mask & __GFP_WAIT) {
rq = get_request_wait(q, rw, NULL);
} else {
rq = get_request(q, rw, NULL, gfp_mask);
if (!rq)
spin_unlock_irq(q->queue_lock);
}
/* q->queue_lock is unlocked at this point */
return rq;
}
EXPORT_SYMBOL(blk_get_request);
/**
* blk_make_request - given a bio, allocate a corresponding struct request.
* @q: target request queue
* @bio: The bio describing the memory mappings that will be submitted for IO.
* It may be a chained-bio properly constructed by block/bio layer.
* @gfp_mask: gfp flags to be used for memory allocation
*
* blk_make_request is the parallel of generic_make_request for BLOCK_PC
* type commands. Where the struct request needs to be farther initialized by
* the caller. It is passed a &struct bio, which describes the memory info of
* the I/O transfer.
*
* The caller of blk_make_request must make sure that bi_io_vec
* are set to describe the memory buffers. That bio_data_dir() will return
* the needed direction of the request. (And all bio's in the passed bio-chain
* are properly set accordingly)
*
* If called under none-sleepable conditions, mapped bio buffers must not
* need bouncing, by calling the appropriate masked or flagged allocator,
* suitable for the target device. Otherwise the call to blk_queue_bounce will
* BUG.
*
* WARNING: When allocating/cloning a bio-chain, careful consideration should be
* given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
* anything but the first bio in the chain. Otherwise you risk waiting for IO
* completion of a bio that hasn't been submitted yet, thus resulting in a
* deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
* of bio_alloc(), as that avoids the mempool deadlock.
* If possible a big IO should be split into smaller parts when allocation
* fails. Partial allocation should not be an error, or you risk a live-lock.
*/
struct request *blk_make_request(struct request_queue *q, struct bio *bio,
gfp_t gfp_mask)
{
struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
if (unlikely(!rq))
return ERR_PTR(-ENOMEM);
for_each_bio(bio) {
struct bio *bounce_bio = bio;
int ret;
blk_queue_bounce(q, &bounce_bio);
ret = blk_rq_append_bio(q, rq, bounce_bio);
if (unlikely(ret)) {
blk_put_request(rq);
return ERR_PTR(ret);
}
}
return rq;
}
EXPORT_SYMBOL(blk_make_request);
/**
* blk_requeue_request - put a request back on queue
* @q: request queue where request should be inserted
* @rq: request to be inserted
*
* Description:
* Drivers often keep queueing requests until the hardware cannot accept
* more, when that condition happens we need to put the request back
* on the queue. Must be called with queue lock held.
*/
void blk_requeue_request(struct request_queue *q, struct request *rq)
{
blk_delete_timer(rq);
blk_clear_rq_complete(rq);
trace_block_rq_requeue(q, rq);
if (blk_rq_tagged(rq))
blk_queue_end_tag(q, rq);
BUG_ON(blk_queued_rq(rq));
elv_requeue_request(q, rq);
}
EXPORT_SYMBOL(blk_requeue_request);
/**
* blk_insert_request - insert a special request into a request queue
* @q: request queue where request should be inserted
* @rq: request to be inserted
* @at_head: insert request at head or tail of queue
* @data: private data
*
* Description:
* Many block devices need to execute commands asynchronously, so they don't
* block the whole kernel from preemption during request execution. This is
* accomplished normally by inserting aritficial requests tagged as
* REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
* be scheduled for actual execution by the request queue.
*
* We have the option of inserting the head or the tail of the queue.
* Typically we use the tail for new ioctls and so forth. We use the head
* of the queue for things like a QUEUE_FULL message from a device, or a
* host that is unable to accept a particular command.
*/
void blk_insert_request(struct request_queue *q, struct request *rq,
int at_head, void *data)
{
int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
unsigned long flags;
/*
* tell I/O scheduler that this isn't a regular read/write (ie it
* must not attempt merges on this) and that it acts as a soft
* barrier
*/
rq->cmd_type = REQ_TYPE_SPECIAL;
rq->special = data;