forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 1
/
signal.c
4800 lines (4189 loc) · 123 KB
/
signal.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/kernel/signal.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
*
* 2003-06-02 Jim Houston - Concurrent Computer Corp.
* Changes to use preallocated sigqueue structures
* to allow signals to be sent reliably.
*/
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/sched/mm.h>
#include <linux/sched/user.h>
#include <linux/sched/debug.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/sched/cputime.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/proc_fs.h>
#include <linux/tty.h>
#include <linux/binfmts.h>
#include <linux/coredump.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/ptrace.h>
#include <linux/signal.h>
#include <linux/signalfd.h>
#include <linux/ratelimit.h>
#include <linux/task_work.h>
#include <linux/capability.h>
#include <linux/freezer.h>
#include <linux/pid_namespace.h>
#include <linux/nsproxy.h>
#include <linux/user_namespace.h>
#include <linux/uprobes.h>
#include <linux/compat.h>
#include <linux/cn_proc.h>
#include <linux/compiler.h>
#include <linux/posix-timers.h>
#include <linux/cgroup.h>
#include <linux/audit.h>
#define CREATE_TRACE_POINTS
#include <trace/events/signal.h>
#include <asm/param.h>
#include <linux/uaccess.h>
#include <asm/unistd.h>
#include <asm/siginfo.h>
#include <asm/cacheflush.h>
#include <asm/syscall.h> /* for syscall_get_* */
/*
* SLAB caches for signal bits.
*/
static struct kmem_cache *sigqueue_cachep;
int print_fatal_signals __read_mostly;
static void __user *sig_handler(struct task_struct *t, int sig)
{
return t->sighand->action[sig - 1].sa.sa_handler;
}
static inline bool sig_handler_ignored(void __user *handler, int sig)
{
/* Is it explicitly or implicitly ignored? */
return handler == SIG_IGN ||
(handler == SIG_DFL && sig_kernel_ignore(sig));
}
static bool sig_task_ignored(struct task_struct *t, int sig, bool force)
{
void __user *handler;
handler = sig_handler(t, sig);
/* SIGKILL and SIGSTOP may not be sent to the global init */
if (unlikely(is_global_init(t) && sig_kernel_only(sig)))
return true;
if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
handler == SIG_DFL && !(force && sig_kernel_only(sig)))
return true;
/* Only allow kernel generated signals to this kthread */
if (unlikely((t->flags & PF_KTHREAD) &&
(handler == SIG_KTHREAD_KERNEL) && !force))
return true;
return sig_handler_ignored(handler, sig);
}
static bool sig_ignored(struct task_struct *t, int sig, bool force)
{
/*
* Blocked signals are never ignored, since the
* signal handler may change by the time it is
* unblocked.
*/
if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
return false;
/*
* Tracers may want to know about even ignored signal unless it
* is SIGKILL which can't be reported anyway but can be ignored
* by SIGNAL_UNKILLABLE task.
*/
if (t->ptrace && sig != SIGKILL)
return false;
return sig_task_ignored(t, sig, force);
}
/*
* Re-calculate pending state from the set of locally pending
* signals, globally pending signals, and blocked signals.
*/
static inline bool has_pending_signals(sigset_t *signal, sigset_t *blocked)
{
unsigned long ready;
long i;
switch (_NSIG_WORDS) {
default:
for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
ready |= signal->sig[i] &~ blocked->sig[i];
break;
case 4: ready = signal->sig[3] &~ blocked->sig[3];
ready |= signal->sig[2] &~ blocked->sig[2];
ready |= signal->sig[1] &~ blocked->sig[1];
ready |= signal->sig[0] &~ blocked->sig[0];
break;
case 2: ready = signal->sig[1] &~ blocked->sig[1];
ready |= signal->sig[0] &~ blocked->sig[0];
break;
case 1: ready = signal->sig[0] &~ blocked->sig[0];
}
return ready != 0;
}
#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
static bool recalc_sigpending_tsk(struct task_struct *t)
{
if ((t->jobctl & (JOBCTL_PENDING_MASK | JOBCTL_TRAP_FREEZE)) ||
PENDING(&t->pending, &t->blocked) ||
PENDING(&t->signal->shared_pending, &t->blocked) ||
cgroup_task_frozen(t)) {
set_tsk_thread_flag(t, TIF_SIGPENDING);
return true;
}
/*
* We must never clear the flag in another thread, or in current
* when it's possible the current syscall is returning -ERESTART*.
* So we don't clear it here, and only callers who know they should do.
*/
return false;
}
/*
* After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
* This is superfluous when called on current, the wakeup is a harmless no-op.
*/
void recalc_sigpending_and_wake(struct task_struct *t)
{
if (recalc_sigpending_tsk(t))
signal_wake_up(t, 0);
}
void recalc_sigpending(void)
{
if (!recalc_sigpending_tsk(current) && !freezing(current))
clear_thread_flag(TIF_SIGPENDING);
}
EXPORT_SYMBOL(recalc_sigpending);
void calculate_sigpending(void)
{
/* Have any signals or users of TIF_SIGPENDING been delayed
* until after fork?
*/
spin_lock_irq(¤t->sighand->siglock);
set_tsk_thread_flag(current, TIF_SIGPENDING);
recalc_sigpending();
spin_unlock_irq(¤t->sighand->siglock);
}
/* Given the mask, find the first available signal that should be serviced. */
#define SYNCHRONOUS_MASK \
(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
int next_signal(struct sigpending *pending, sigset_t *mask)
{
unsigned long i, *s, *m, x;
int sig = 0;
s = pending->signal.sig;
m = mask->sig;
/*
* Handle the first word specially: it contains the
* synchronous signals that need to be dequeued first.
*/
x = *s &~ *m;
if (x) {
if (x & SYNCHRONOUS_MASK)
x &= SYNCHRONOUS_MASK;
sig = ffz(~x) + 1;
return sig;
}
switch (_NSIG_WORDS) {
default:
for (i = 1; i < _NSIG_WORDS; ++i) {
x = *++s &~ *++m;
if (!x)
continue;
sig = ffz(~x) + i*_NSIG_BPW + 1;
break;
}
break;
case 2:
x = s[1] &~ m[1];
if (!x)
break;
sig = ffz(~x) + _NSIG_BPW + 1;
break;
case 1:
/* Nothing to do */
break;
}
return sig;
}
static inline void print_dropped_signal(int sig)
{
static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
if (!print_fatal_signals)
return;
if (!__ratelimit(&ratelimit_state))
return;
pr_info("%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
current->comm, current->pid, sig);
}
/**
* task_set_jobctl_pending - set jobctl pending bits
* @task: target task
* @mask: pending bits to set
*
* Clear @mask from @task->jobctl. @mask must be subset of
* %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
* %JOBCTL_TRAPPING. If stop signo is being set, the existing signo is
* cleared. If @task is already being killed or exiting, this function
* becomes noop.
*
* CONTEXT:
* Must be called with @task->sighand->siglock held.
*
* RETURNS:
* %true if @mask is set, %false if made noop because @task was dying.
*/
bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
{
BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
return false;
if (mask & JOBCTL_STOP_SIGMASK)
task->jobctl &= ~JOBCTL_STOP_SIGMASK;
task->jobctl |= mask;
return true;
}
/**
* task_clear_jobctl_trapping - clear jobctl trapping bit
* @task: target task
*
* If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
* Clear it and wake up the ptracer. Note that we don't need any further
* locking. @task->siglock guarantees that @task->parent points to the
* ptracer.
*
* CONTEXT:
* Must be called with @task->sighand->siglock held.
*/
void task_clear_jobctl_trapping(struct task_struct *task)
{
if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
task->jobctl &= ~JOBCTL_TRAPPING;
smp_mb(); /* advised by wake_up_bit() */
wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
}
}
/**
* task_clear_jobctl_pending - clear jobctl pending bits
* @task: target task
* @mask: pending bits to clear
*
* Clear @mask from @task->jobctl. @mask must be subset of
* %JOBCTL_PENDING_MASK. If %JOBCTL_STOP_PENDING is being cleared, other
* STOP bits are cleared together.
*
* If clearing of @mask leaves no stop or trap pending, this function calls
* task_clear_jobctl_trapping().
*
* CONTEXT:
* Must be called with @task->sighand->siglock held.
*/
void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
{
BUG_ON(mask & ~JOBCTL_PENDING_MASK);
if (mask & JOBCTL_STOP_PENDING)
mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
task->jobctl &= ~mask;
if (!(task->jobctl & JOBCTL_PENDING_MASK))
task_clear_jobctl_trapping(task);
}
/**
* task_participate_group_stop - participate in a group stop
* @task: task participating in a group stop
*
* @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
* Group stop states are cleared and the group stop count is consumed if
* %JOBCTL_STOP_CONSUME was set. If the consumption completes the group
* stop, the appropriate `SIGNAL_*` flags are set.
*
* CONTEXT:
* Must be called with @task->sighand->siglock held.
*
* RETURNS:
* %true if group stop completion should be notified to the parent, %false
* otherwise.
*/
static bool task_participate_group_stop(struct task_struct *task)
{
struct signal_struct *sig = task->signal;
bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
if (!consume)
return false;
if (!WARN_ON_ONCE(sig->group_stop_count == 0))
sig->group_stop_count--;
/*
* Tell the caller to notify completion iff we are entering into a
* fresh group stop. Read comment in do_signal_stop() for details.
*/
if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
signal_set_stop_flags(sig, SIGNAL_STOP_STOPPED);
return true;
}
return false;
}
void task_join_group_stop(struct task_struct *task)
{
unsigned long mask = current->jobctl & JOBCTL_STOP_SIGMASK;
struct signal_struct *sig = current->signal;
if (sig->group_stop_count) {
sig->group_stop_count++;
mask |= JOBCTL_STOP_CONSUME;
} else if (!(sig->flags & SIGNAL_STOP_STOPPED))
return;
/* Have the new thread join an on-going signal group stop */
task_set_jobctl_pending(task, mask | JOBCTL_STOP_PENDING);
}
/*
* allocate a new signal queue record
* - this may be called without locks if and only if t == current, otherwise an
* appropriate lock must be held to stop the target task from exiting
*/
static struct sigqueue *
__sigqueue_alloc(int sig, struct task_struct *t, gfp_t gfp_flags,
int override_rlimit, const unsigned int sigqueue_flags)
{
struct sigqueue *q = NULL;
struct ucounts *ucounts = NULL;
long sigpending;
/*
* Protect access to @t credentials. This can go away when all
* callers hold rcu read lock.
*
* NOTE! A pending signal will hold on to the user refcount,
* and we get/put the refcount only when the sigpending count
* changes from/to zero.
*/
rcu_read_lock();
ucounts = task_ucounts(t);
sigpending = inc_rlimit_get_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
rcu_read_unlock();
if (!sigpending)
return NULL;
if (override_rlimit || likely(sigpending <= task_rlimit(t, RLIMIT_SIGPENDING))) {
q = kmem_cache_alloc(sigqueue_cachep, gfp_flags);
} else {
print_dropped_signal(sig);
}
if (unlikely(q == NULL)) {
dec_rlimit_put_ucounts(ucounts, UCOUNT_RLIMIT_SIGPENDING);
} else {
INIT_LIST_HEAD(&q->list);
q->flags = sigqueue_flags;
q->ucounts = ucounts;
}
return q;
}
static void __sigqueue_free(struct sigqueue *q)
{
if (q->flags & SIGQUEUE_PREALLOC)
return;
if (q->ucounts) {
dec_rlimit_put_ucounts(q->ucounts, UCOUNT_RLIMIT_SIGPENDING);
q->ucounts = NULL;
}
kmem_cache_free(sigqueue_cachep, q);
}
void flush_sigqueue(struct sigpending *queue)
{
struct sigqueue *q;
sigemptyset(&queue->signal);
while (!list_empty(&queue->list)) {
q = list_entry(queue->list.next, struct sigqueue , list);
list_del_init(&q->list);
__sigqueue_free(q);
}
}
/*
* Flush all pending signals for this kthread.
*/
void flush_signals(struct task_struct *t)
{
unsigned long flags;
spin_lock_irqsave(&t->sighand->siglock, flags);
clear_tsk_thread_flag(t, TIF_SIGPENDING);
flush_sigqueue(&t->pending);
flush_sigqueue(&t->signal->shared_pending);
spin_unlock_irqrestore(&t->sighand->siglock, flags);
}
EXPORT_SYMBOL(flush_signals);
#ifdef CONFIG_POSIX_TIMERS
static void __flush_itimer_signals(struct sigpending *pending)
{
sigset_t signal, retain;
struct sigqueue *q, *n;
signal = pending->signal;
sigemptyset(&retain);
list_for_each_entry_safe(q, n, &pending->list, list) {
int sig = q->info.si_signo;
if (likely(q->info.si_code != SI_TIMER)) {
sigaddset(&retain, sig);
} else {
sigdelset(&signal, sig);
list_del_init(&q->list);
__sigqueue_free(q);
}
}
sigorsets(&pending->signal, &signal, &retain);
}
void flush_itimer_signals(void)
{
struct task_struct *tsk = current;
unsigned long flags;
spin_lock_irqsave(&tsk->sighand->siglock, flags);
__flush_itimer_signals(&tsk->pending);
__flush_itimer_signals(&tsk->signal->shared_pending);
spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
}
#endif
void ignore_signals(struct task_struct *t)
{
int i;
for (i = 0; i < _NSIG; ++i)
t->sighand->action[i].sa.sa_handler = SIG_IGN;
flush_signals(t);
}
/*
* Flush all handlers for a task.
*/
void
flush_signal_handlers(struct task_struct *t, int force_default)
{
int i;
struct k_sigaction *ka = &t->sighand->action[0];
for (i = _NSIG ; i != 0 ; i--) {
if (force_default || ka->sa.sa_handler != SIG_IGN)
ka->sa.sa_handler = SIG_DFL;
ka->sa.sa_flags = 0;
#ifdef __ARCH_HAS_SA_RESTORER
ka->sa.sa_restorer = NULL;
#endif
sigemptyset(&ka->sa.sa_mask);
ka++;
}
}
bool unhandled_signal(struct task_struct *tsk, int sig)
{
void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
if (is_global_init(tsk))
return true;
if (handler != SIG_IGN && handler != SIG_DFL)
return false;
/* if ptraced, let the tracer determine */
return !tsk->ptrace;
}
static void collect_signal(int sig, struct sigpending *list, kernel_siginfo_t *info,
bool *resched_timer)
{
struct sigqueue *q, *first = NULL;
/*
* Collect the siginfo appropriate to this signal. Check if
* there is another siginfo for the same signal.
*/
list_for_each_entry(q, &list->list, list) {
if (q->info.si_signo == sig) {
if (first)
goto still_pending;
first = q;
}
}
sigdelset(&list->signal, sig);
if (first) {
still_pending:
list_del_init(&first->list);
copy_siginfo(info, &first->info);
*resched_timer =
(first->flags & SIGQUEUE_PREALLOC) &&
(info->si_code == SI_TIMER) &&
(info->si_sys_private);
__sigqueue_free(first);
} else {
/*
* Ok, it wasn't in the queue. This must be
* a fast-pathed signal or we must have been
* out of queue space. So zero out the info.
*/
clear_siginfo(info);
info->si_signo = sig;
info->si_errno = 0;
info->si_code = SI_USER;
info->si_pid = 0;
info->si_uid = 0;
}
}
static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
kernel_siginfo_t *info, bool *resched_timer)
{
int sig = next_signal(pending, mask);
if (sig)
collect_signal(sig, pending, info, resched_timer);
return sig;
}
/*
* Dequeue a signal and return the element to the caller, which is
* expected to free it.
*
* All callers have to hold the siglock.
*/
int dequeue_signal(struct task_struct *tsk, sigset_t *mask,
kernel_siginfo_t *info, enum pid_type *type)
{
bool resched_timer = false;
int signr;
/* We only dequeue private signals from ourselves, we don't let
* signalfd steal them
*/
*type = PIDTYPE_PID;
signr = __dequeue_signal(&tsk->pending, mask, info, &resched_timer);
if (!signr) {
*type = PIDTYPE_TGID;
signr = __dequeue_signal(&tsk->signal->shared_pending,
mask, info, &resched_timer);
#ifdef CONFIG_POSIX_TIMERS
/*
* itimer signal ?
*
* itimers are process shared and we restart periodic
* itimers in the signal delivery path to prevent DoS
* attacks in the high resolution timer case. This is
* compliant with the old way of self-restarting
* itimers, as the SIGALRM is a legacy signal and only
* queued once. Changing the restart behaviour to
* restart the timer in the signal dequeue path is
* reducing the timer noise on heavy loaded !highres
* systems too.
*/
if (unlikely(signr == SIGALRM)) {
struct hrtimer *tmr = &tsk->signal->real_timer;
if (!hrtimer_is_queued(tmr) &&
tsk->signal->it_real_incr != 0) {
hrtimer_forward(tmr, tmr->base->get_time(),
tsk->signal->it_real_incr);
hrtimer_restart(tmr);
}
}
#endif
}
recalc_sigpending();
if (!signr)
return 0;
if (unlikely(sig_kernel_stop(signr))) {
/*
* Set a marker that we have dequeued a stop signal. Our
* caller might release the siglock and then the pending
* stop signal it is about to process is no longer in the
* pending bitmasks, but must still be cleared by a SIGCONT
* (and overruled by a SIGKILL). So those cases clear this
* shared flag after we've set it. Note that this flag may
* remain set after the signal we return is ignored or
* handled. That doesn't matter because its only purpose
* is to alert stop-signal processing code when another
* processor has come along and cleared the flag.
*/
current->jobctl |= JOBCTL_STOP_DEQUEUED;
}
#ifdef CONFIG_POSIX_TIMERS
if (resched_timer) {
/*
* Release the siglock to ensure proper locking order
* of timer locks outside of siglocks. Note, we leave
* irqs disabled here, since the posix-timers code is
* about to disable them again anyway.
*/
spin_unlock(&tsk->sighand->siglock);
posixtimer_rearm(info);
spin_lock(&tsk->sighand->siglock);
/* Don't expose the si_sys_private value to userspace */
info->si_sys_private = 0;
}
#endif
return signr;
}
EXPORT_SYMBOL_GPL(dequeue_signal);
static int dequeue_synchronous_signal(kernel_siginfo_t *info)
{
struct task_struct *tsk = current;
struct sigpending *pending = &tsk->pending;
struct sigqueue *q, *sync = NULL;
/*
* Might a synchronous signal be in the queue?
*/
if (!((pending->signal.sig[0] & ~tsk->blocked.sig[0]) & SYNCHRONOUS_MASK))
return 0;
/*
* Return the first synchronous signal in the queue.
*/
list_for_each_entry(q, &pending->list, list) {
/* Synchronous signals have a positive si_code */
if ((q->info.si_code > SI_USER) &&
(sigmask(q->info.si_signo) & SYNCHRONOUS_MASK)) {
sync = q;
goto next;
}
}
return 0;
next:
/*
* Check if there is another siginfo for the same signal.
*/
list_for_each_entry_continue(q, &pending->list, list) {
if (q->info.si_signo == sync->info.si_signo)
goto still_pending;
}
sigdelset(&pending->signal, sync->info.si_signo);
recalc_sigpending();
still_pending:
list_del_init(&sync->list);
copy_siginfo(info, &sync->info);
__sigqueue_free(sync);
return info->si_signo;
}
/*
* Tell a process that it has a new active signal..
*
* NOTE! we rely on the previous spin_lock to
* lock interrupts for us! We can only be called with
* "siglock" held, and the local interrupt must
* have been disabled when that got acquired!
*
* No need to set need_resched since signal event passing
* goes through ->blocked
*/
void signal_wake_up_state(struct task_struct *t, unsigned int state)
{
lockdep_assert_held(&t->sighand->siglock);
set_tsk_thread_flag(t, TIF_SIGPENDING);
/*
* TASK_WAKEKILL also means wake it up in the stopped/traced/killable
* case. We don't check t->state here because there is a race with it
* executing another processor and just now entering stopped state.
* By using wake_up_state, we ensure the process will wake up and
* handle its death signal.
*/
if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
kick_process(t);
}
/*
* Remove signals in mask from the pending set and queue.
* Returns 1 if any signals were found.
*
* All callers must be holding the siglock.
*/
static void flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
{
struct sigqueue *q, *n;
sigset_t m;
sigandsets(&m, mask, &s->signal);
if (sigisemptyset(&m))
return;
sigandnsets(&s->signal, &s->signal, mask);
list_for_each_entry_safe(q, n, &s->list, list) {
if (sigismember(mask, q->info.si_signo)) {
list_del_init(&q->list);
__sigqueue_free(q);
}
}
}
static inline int is_si_special(const struct kernel_siginfo *info)
{
return info <= SEND_SIG_PRIV;
}
static inline bool si_fromuser(const struct kernel_siginfo *info)
{
return info == SEND_SIG_NOINFO ||
(!is_si_special(info) && SI_FROMUSER(info));
}
/*
* called with RCU read lock from check_kill_permission()
*/
static bool kill_ok_by_cred(struct task_struct *t)
{
const struct cred *cred = current_cred();
const struct cred *tcred = __task_cred(t);
return uid_eq(cred->euid, tcred->suid) ||
uid_eq(cred->euid, tcred->uid) ||
uid_eq(cred->uid, tcred->suid) ||
uid_eq(cred->uid, tcred->uid) ||
ns_capable(tcred->user_ns, CAP_KILL);
}
/*
* Bad permissions for sending the signal
* - the caller must hold the RCU read lock
*/
static int check_kill_permission(int sig, struct kernel_siginfo *info,
struct task_struct *t)
{
struct pid *sid;
int error;
if (!valid_signal(sig))
return -EINVAL;
if (!si_fromuser(info))
return 0;
error = audit_signal_info(sig, t); /* Let audit system see the signal */
if (error)
return error;
if (!same_thread_group(current, t) &&
!kill_ok_by_cred(t)) {
switch (sig) {
case SIGCONT:
sid = task_session(t);
/*
* We don't return the error if sid == NULL. The
* task was unhashed, the caller must notice this.
*/
if (!sid || sid == task_session(current))
break;
fallthrough;
default:
return -EPERM;
}
}
return security_task_kill(t, info, sig, NULL);
}
/**
* ptrace_trap_notify - schedule trap to notify ptracer
* @t: tracee wanting to notify tracer
*
* This function schedules sticky ptrace trap which is cleared on the next
* TRAP_STOP to notify ptracer of an event. @t must have been seized by
* ptracer.
*
* If @t is running, STOP trap will be taken. If trapped for STOP and
* ptracer is listening for events, tracee is woken up so that it can
* re-trap for the new event. If trapped otherwise, STOP trap will be
* eventually taken without returning to userland after the existing traps
* are finished by PTRACE_CONT.
*
* CONTEXT:
* Must be called with @task->sighand->siglock held.
*/
static void ptrace_trap_notify(struct task_struct *t)
{
WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
lockdep_assert_held(&t->sighand->siglock);
task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
}
/*
* Handle magic process-wide effects of stop/continue signals. Unlike
* the signal actions, these happen immediately at signal-generation
* time regardless of blocking, ignoring, or handling. This does the
* actual continuing for SIGCONT, but not the actual stopping for stop
* signals. The process stop is done as a signal action for SIG_DFL.
*
* Returns true if the signal should be actually delivered, otherwise
* it should be dropped.
*/
static bool prepare_signal(int sig, struct task_struct *p, bool force)
{
struct signal_struct *signal = p->signal;
struct task_struct *t;
sigset_t flush;
if (signal->flags & SIGNAL_GROUP_EXIT) {
if (signal->core_state)
return sig == SIGKILL;
/*
* The process is in the middle of dying, nothing to do.
*/
} else if (sig_kernel_stop(sig)) {
/*
* This is a stop signal. Remove SIGCONT from all queues.
*/
siginitset(&flush, sigmask(SIGCONT));
flush_sigqueue_mask(&flush, &signal->shared_pending);
for_each_thread(p, t)
flush_sigqueue_mask(&flush, &t->pending);
} else if (sig == SIGCONT) {
unsigned int why;
/*
* Remove all stop signals from all queues, wake all threads.
*/
siginitset(&flush, SIG_KERNEL_STOP_MASK);
flush_sigqueue_mask(&flush, &signal->shared_pending);
for_each_thread(p, t) {
flush_sigqueue_mask(&flush, &t->pending);
task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
if (likely(!(t->ptrace & PT_SEIZED))) {
t->jobctl &= ~JOBCTL_STOPPED;
wake_up_state(t, __TASK_STOPPED);
} else
ptrace_trap_notify(t);
}
/*
* Notify the parent with CLD_CONTINUED if we were stopped.
*
* If we were in the middle of a group stop, we pretend it
* was already finished, and then continued. Since SIGCHLD
* doesn't queue we report only CLD_STOPPED, as if the next
* CLD_CONTINUED was dropped.
*/
why = 0;
if (signal->flags & SIGNAL_STOP_STOPPED)
why |= SIGNAL_CLD_CONTINUED;
else if (signal->group_stop_count)
why |= SIGNAL_CLD_STOPPED;
if (why) {
/*
* The first thread which returns from do_signal_stop()
* will take ->siglock, notice SIGNAL_CLD_MASK, and
* notify its parent. See get_signal().
*/
signal_set_stop_flags(signal, why | SIGNAL_STOP_CONTINUED);
signal->group_stop_count = 0;
signal->group_exit_code = 0;
}
}
return !sig_ignored(p, sig, force);
}
/*
* Test if P wants to take SIG. After we've checked all threads with this,
* it's equivalent to finding no threads not blocking SIG. Any threads not
* blocking SIG were ruled out because they are not running and already
* have pending signals. Such threads will dequeue from the shared queue
* as soon as they're available, so putting the signal on the shared queue
* will be equivalent to sending it to one such thread.
*/
static inline bool wants_signal(int sig, struct task_struct *p)
{
if (sigismember(&p->blocked, sig))
return false;
if (p->flags & PF_EXITING)
return false;
if (sig == SIGKILL)
return true;
if (task_is_stopped_or_traced(p))
return false;
return task_curr(p) || !task_sigpending(p);
}
static void complete_signal(int sig, struct task_struct *p, enum pid_type type)
{
struct signal_struct *signal = p->signal;
struct task_struct *t;