forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathksm.c
3096 lines (2766 loc) · 85.5 KB
/
ksm.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Memory merging support.
*
* This code enables dynamic sharing of identical pages found in different
* memory areas, even if they are not shared by fork()
*
* Copyright (C) 2008-2009 Red Hat, Inc.
* Authors:
* Izik Eidus
* Andrea Arcangeli
* Chris Wright
* Hugh Dickins
*
* This work is licensed under the terms of the GNU GPL, version 2.
*/
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/mman.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/sched/coredump.h>
#include <linux/rwsem.h>
#include <linux/pagemap.h>
#include <linux/rmap.h>
#include <linux/spinlock.h>
#include <linux/jhash.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/wait.h>
#include <linux/slab.h>
#include <linux/rbtree.h>
#include <linux/memory.h>
#include <linux/mmu_notifier.h>
#include <linux/swap.h>
#include <linux/ksm.h>
#include <linux/hashtable.h>
#include <linux/freezer.h>
#include <linux/oom.h>
#include <linux/numa.h>
#include <asm/tlbflush.h>
#include "internal.h"
#ifdef CONFIG_NUMA
#define NUMA(x) (x)
#define DO_NUMA(x) do { (x); } while (0)
#else
#define NUMA(x) (0)
#define DO_NUMA(x) do { } while (0)
#endif
/*
* A few notes about the KSM scanning process,
* to make it easier to understand the data structures below:
*
* In order to reduce excessive scanning, KSM sorts the memory pages by their
* contents into a data structure that holds pointers to the pages' locations.
*
* Since the contents of the pages may change at any moment, KSM cannot just
* insert the pages into a normal sorted tree and expect it to find anything.
* Therefore KSM uses two data structures - the stable and the unstable tree.
*
* The stable tree holds pointers to all the merged pages (ksm pages), sorted
* by their contents. Because each such page is write-protected, searching on
* this tree is fully assured to be working (except when pages are unmapped),
* and therefore this tree is called the stable tree.
*
* In addition to the stable tree, KSM uses a second data structure called the
* unstable tree: this tree holds pointers to pages which have been found to
* be "unchanged for a period of time". The unstable tree sorts these pages
* by their contents, but since they are not write-protected, KSM cannot rely
* upon the unstable tree to work correctly - the unstable tree is liable to
* be corrupted as its contents are modified, and so it is called unstable.
*
* KSM solves this problem by several techniques:
*
* 1) The unstable tree is flushed every time KSM completes scanning all
* memory areas, and then the tree is rebuilt again from the beginning.
* 2) KSM will only insert into the unstable tree, pages whose hash value
* has not changed since the previous scan of all memory areas.
* 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
* colors of the nodes and not on their contents, assuring that even when
* the tree gets "corrupted" it won't get out of balance, so scanning time
* remains the same (also, searching and inserting nodes in an rbtree uses
* the same algorithm, so we have no overhead when we flush and rebuild).
* 4) KSM never flushes the stable tree, which means that even if it were to
* take 10 attempts to find a page in the unstable tree, once it is found,
* it is secured in the stable tree. (When we scan a new page, we first
* compare it against the stable tree, and then against the unstable tree.)
*
* If the merge_across_nodes tunable is unset, then KSM maintains multiple
* stable trees and multiple unstable trees: one of each for each NUMA node.
*/
/**
* struct mm_slot - ksm information per mm that is being scanned
* @link: link to the mm_slots hash list
* @mm_list: link into the mm_slots list, rooted in ksm_mm_head
* @rmap_list: head for this mm_slot's singly-linked list of rmap_items
* @mm: the mm that this information is valid for
*/
struct mm_slot {
struct hlist_node link;
struct list_head mm_list;
struct rmap_item *rmap_list;
struct mm_struct *mm;
};
/**
* struct ksm_scan - cursor for scanning
* @mm_slot: the current mm_slot we are scanning
* @address: the next address inside that to be scanned
* @rmap_list: link to the next rmap to be scanned in the rmap_list
* @seqnr: count of completed full scans (needed when removing unstable node)
*
* There is only the one ksm_scan instance of this cursor structure.
*/
struct ksm_scan {
struct mm_slot *mm_slot;
unsigned long address;
struct rmap_item **rmap_list;
unsigned long seqnr;
};
/**
* struct stable_node - node of the stable rbtree
* @node: rb node of this ksm page in the stable tree
* @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
* @hlist_dup: linked into the stable_node->hlist with a stable_node chain
* @list: linked into migrate_nodes, pending placement in the proper node tree
* @hlist: hlist head of rmap_items using this ksm page
* @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
* @chain_prune_time: time of the last full garbage collection
* @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
* @nid: NUMA node id of stable tree in which linked (may not match kpfn)
*/
struct stable_node {
union {
struct rb_node node; /* when node of stable tree */
struct { /* when listed for migration */
struct list_head *head;
struct {
struct hlist_node hlist_dup;
struct list_head list;
};
};
};
struct hlist_head hlist;
union {
unsigned long kpfn;
unsigned long chain_prune_time;
};
/*
* STABLE_NODE_CHAIN can be any negative number in
* rmap_hlist_len negative range, but better not -1 to be able
* to reliably detect underflows.
*/
#define STABLE_NODE_CHAIN -1024
int rmap_hlist_len;
#ifdef CONFIG_NUMA
int nid;
#endif
};
/**
* struct rmap_item - reverse mapping item for virtual addresses
* @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
* @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
* @nid: NUMA node id of unstable tree in which linked (may not match page)
* @mm: the memory structure this rmap_item is pointing into
* @address: the virtual address this rmap_item tracks (+ flags in low bits)
* @oldchecksum: previous checksum of the page at that virtual address
* @node: rb node of this rmap_item in the unstable tree
* @head: pointer to stable_node heading this list in the stable tree
* @hlist: link into hlist of rmap_items hanging off that stable_node
*/
struct rmap_item {
struct rmap_item *rmap_list;
union {
struct anon_vma *anon_vma; /* when stable */
#ifdef CONFIG_NUMA
int nid; /* when node of unstable tree */
#endif
};
struct mm_struct *mm;
unsigned long address; /* + low bits used for flags below */
unsigned int oldchecksum; /* when unstable */
union {
struct rb_node node; /* when node of unstable tree */
struct { /* when listed from stable tree */
struct stable_node *head;
struct hlist_node hlist;
};
};
};
#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
#define STABLE_FLAG 0x200 /* is listed from the stable tree */
/* The stable and unstable tree heads */
static struct rb_root one_stable_tree[1] = { RB_ROOT };
static struct rb_root one_unstable_tree[1] = { RB_ROOT };
static struct rb_root *root_stable_tree = one_stable_tree;
static struct rb_root *root_unstable_tree = one_unstable_tree;
/* Recently migrated nodes of stable tree, pending proper placement */
static LIST_HEAD(migrate_nodes);
#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
#define MM_SLOTS_HASH_BITS 10
static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
static struct mm_slot ksm_mm_head = {
.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
};
static struct ksm_scan ksm_scan = {
.mm_slot = &ksm_mm_head,
};
static struct kmem_cache *rmap_item_cache;
static struct kmem_cache *stable_node_cache;
static struct kmem_cache *mm_slot_cache;
/* The number of nodes in the stable tree */
static unsigned long ksm_pages_shared;
/* The number of page slots additionally sharing those nodes */
static unsigned long ksm_pages_sharing;
/* The number of nodes in the unstable tree */
static unsigned long ksm_pages_unshared;
/* The number of rmap_items in use: to calculate pages_volatile */
static unsigned long ksm_rmap_items;
/* The number of stable_node chains */
static unsigned long ksm_stable_node_chains;
/* The number of stable_node dups linked to the stable_node chains */
static unsigned long ksm_stable_node_dups;
/* Delay in pruning stale stable_node_dups in the stable_node_chains */
static int ksm_stable_node_chains_prune_millisecs = 2000;
/* Maximum number of page slots sharing a stable node */
static int ksm_max_page_sharing = 256;
/* Number of pages ksmd should scan in one batch */
static unsigned int ksm_thread_pages_to_scan = 100;
/* Milliseconds ksmd should sleep between batches */
static unsigned int ksm_thread_sleep_millisecs = 20;
/* Checksum of an empty (zeroed) page */
static unsigned int zero_checksum __read_mostly;
/* Whether to merge empty (zeroed) pages with actual zero pages */
static bool ksm_use_zero_pages __read_mostly;
#ifdef CONFIG_NUMA
/* Zeroed when merging across nodes is not allowed */
static unsigned int ksm_merge_across_nodes = 1;
static int ksm_nr_node_ids = 1;
#else
#define ksm_merge_across_nodes 1U
#define ksm_nr_node_ids 1
#endif
#define KSM_RUN_STOP 0
#define KSM_RUN_MERGE 1
#define KSM_RUN_UNMERGE 2
#define KSM_RUN_OFFLINE 4
static unsigned long ksm_run = KSM_RUN_STOP;
static void wait_while_offlining(void);
static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
static DEFINE_MUTEX(ksm_thread_mutex);
static DEFINE_SPINLOCK(ksm_mmlist_lock);
#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
sizeof(struct __struct), __alignof__(struct __struct),\
(__flags), NULL)
static int __init ksm_slab_init(void)
{
rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
if (!rmap_item_cache)
goto out;
stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
if (!stable_node_cache)
goto out_free1;
mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
if (!mm_slot_cache)
goto out_free2;
return 0;
out_free2:
kmem_cache_destroy(stable_node_cache);
out_free1:
kmem_cache_destroy(rmap_item_cache);
out:
return -ENOMEM;
}
static void __init ksm_slab_free(void)
{
kmem_cache_destroy(mm_slot_cache);
kmem_cache_destroy(stable_node_cache);
kmem_cache_destroy(rmap_item_cache);
mm_slot_cache = NULL;
}
static __always_inline bool is_stable_node_chain(struct stable_node *chain)
{
return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
}
static __always_inline bool is_stable_node_dup(struct stable_node *dup)
{
return dup->head == STABLE_NODE_DUP_HEAD;
}
static inline void stable_node_chain_add_dup(struct stable_node *dup,
struct stable_node *chain)
{
VM_BUG_ON(is_stable_node_dup(dup));
dup->head = STABLE_NODE_DUP_HEAD;
VM_BUG_ON(!is_stable_node_chain(chain));
hlist_add_head(&dup->hlist_dup, &chain->hlist);
ksm_stable_node_dups++;
}
static inline void __stable_node_dup_del(struct stable_node *dup)
{
VM_BUG_ON(!is_stable_node_dup(dup));
hlist_del(&dup->hlist_dup);
ksm_stable_node_dups--;
}
static inline void stable_node_dup_del(struct stable_node *dup)
{
VM_BUG_ON(is_stable_node_chain(dup));
if (is_stable_node_dup(dup))
__stable_node_dup_del(dup);
else
rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
#ifdef CONFIG_DEBUG_VM
dup->head = NULL;
#endif
}
static inline struct rmap_item *alloc_rmap_item(void)
{
struct rmap_item *rmap_item;
rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
__GFP_NORETRY | __GFP_NOWARN);
if (rmap_item)
ksm_rmap_items++;
return rmap_item;
}
static inline void free_rmap_item(struct rmap_item *rmap_item)
{
ksm_rmap_items--;
rmap_item->mm = NULL; /* debug safety */
kmem_cache_free(rmap_item_cache, rmap_item);
}
static inline struct stable_node *alloc_stable_node(void)
{
/*
* The allocation can take too long with GFP_KERNEL when memory is under
* pressure, which may lead to hung task warnings. Adding __GFP_HIGH
* grants access to memory reserves, helping to avoid this problem.
*/
return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
}
static inline void free_stable_node(struct stable_node *stable_node)
{
VM_BUG_ON(stable_node->rmap_hlist_len &&
!is_stable_node_chain(stable_node));
kmem_cache_free(stable_node_cache, stable_node);
}
static inline struct mm_slot *alloc_mm_slot(void)
{
if (!mm_slot_cache) /* initialization failed */
return NULL;
return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
}
static inline void free_mm_slot(struct mm_slot *mm_slot)
{
kmem_cache_free(mm_slot_cache, mm_slot);
}
static struct mm_slot *get_mm_slot(struct mm_struct *mm)
{
struct mm_slot *slot;
hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
if (slot->mm == mm)
return slot;
return NULL;
}
static void insert_to_mm_slots_hash(struct mm_struct *mm,
struct mm_slot *mm_slot)
{
mm_slot->mm = mm;
hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
}
/*
* ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
* page tables after it has passed through ksm_exit() - which, if necessary,
* takes mmap_sem briefly to serialize against them. ksm_exit() does not set
* a special flag: they can just back out as soon as mm_users goes to zero.
* ksm_test_exit() is used throughout to make this test for exit: in some
* places for correctness, in some places just to avoid unnecessary work.
*/
static inline bool ksm_test_exit(struct mm_struct *mm)
{
return atomic_read(&mm->mm_users) == 0;
}
/*
* We use break_ksm to break COW on a ksm page: it's a stripped down
*
* if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
* put_page(page);
*
* but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
* in case the application has unmapped and remapped mm,addr meanwhile.
* Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
* mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
*
* FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
* of the process that owns 'vma'. We also do not want to enforce
* protection keys here anyway.
*/
static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
{
struct page *page;
int ret = 0;
do {
cond_resched();
page = follow_page(vma, addr,
FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
if (IS_ERR_OR_NULL(page))
break;
if (PageKsm(page))
ret = handle_mm_fault(vma, addr,
FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
else
ret = VM_FAULT_WRITE;
put_page(page);
} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
/*
* We must loop because handle_mm_fault() may back out if there's
* any difficulty e.g. if pte accessed bit gets updated concurrently.
*
* VM_FAULT_WRITE is what we have been hoping for: it indicates that
* COW has been broken, even if the vma does not permit VM_WRITE;
* but note that a concurrent fault might break PageKsm for us.
*
* VM_FAULT_SIGBUS could occur if we race with truncation of the
* backing file, which also invalidates anonymous pages: that's
* okay, that truncation will have unmapped the PageKsm for us.
*
* VM_FAULT_OOM: at the time of writing (late July 2009), setting
* aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
* current task has TIF_MEMDIE set, and will be OOM killed on return
* to user; and ksmd, having no mm, would never be chosen for that.
*
* But if the mm is in a limited mem_cgroup, then the fault may fail
* with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
* even ksmd can fail in this way - though it's usually breaking ksm
* just to undo a merge it made a moment before, so unlikely to oom.
*
* That's a pity: we might therefore have more kernel pages allocated
* than we're counting as nodes in the stable tree; but ksm_do_scan
* will retry to break_cow on each pass, so should recover the page
* in due course. The important thing is to not let VM_MERGEABLE
* be cleared while any such pages might remain in the area.
*/
return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
}
static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
unsigned long addr)
{
struct vm_area_struct *vma;
if (ksm_test_exit(mm))
return NULL;
vma = find_vma(mm, addr);
if (!vma || vma->vm_start > addr)
return NULL;
if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
return NULL;
return vma;
}
static void break_cow(struct rmap_item *rmap_item)
{
struct mm_struct *mm = rmap_item->mm;
unsigned long addr = rmap_item->address;
struct vm_area_struct *vma;
/*
* It is not an accident that whenever we want to break COW
* to undo, we also need to drop a reference to the anon_vma.
*/
put_anon_vma(rmap_item->anon_vma);
down_read(&mm->mmap_sem);
vma = find_mergeable_vma(mm, addr);
if (vma)
break_ksm(vma, addr);
up_read(&mm->mmap_sem);
}
static struct page *get_mergeable_page(struct rmap_item *rmap_item)
{
struct mm_struct *mm = rmap_item->mm;
unsigned long addr = rmap_item->address;
struct vm_area_struct *vma;
struct page *page;
down_read(&mm->mmap_sem);
vma = find_mergeable_vma(mm, addr);
if (!vma)
goto out;
page = follow_page(vma, addr, FOLL_GET);
if (IS_ERR_OR_NULL(page))
goto out;
if (PageAnon(page)) {
flush_anon_page(vma, page, addr);
flush_dcache_page(page);
} else {
put_page(page);
out:
page = NULL;
}
up_read(&mm->mmap_sem);
return page;
}
/*
* This helper is used for getting right index into array of tree roots.
* When merge_across_nodes knob is set to 1, there are only two rb-trees for
* stable and unstable pages from all nodes with roots in index 0. Otherwise,
* every node has its own stable and unstable tree.
*/
static inline int get_kpfn_nid(unsigned long kpfn)
{
return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
}
static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
struct rb_root *root)
{
struct stable_node *chain = alloc_stable_node();
VM_BUG_ON(is_stable_node_chain(dup));
if (likely(chain)) {
INIT_HLIST_HEAD(&chain->hlist);
chain->chain_prune_time = jiffies;
chain->rmap_hlist_len = STABLE_NODE_CHAIN;
#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
chain->nid = -1; /* debug */
#endif
ksm_stable_node_chains++;
/*
* Put the stable node chain in the first dimension of
* the stable tree and at the same time remove the old
* stable node.
*/
rb_replace_node(&dup->node, &chain->node, root);
/*
* Move the old stable node to the second dimension
* queued in the hlist_dup. The invariant is that all
* dup stable_nodes in the chain->hlist point to pages
* that are wrprotected and have the exact same
* content.
*/
stable_node_chain_add_dup(dup, chain);
}
return chain;
}
static inline void free_stable_node_chain(struct stable_node *chain,
struct rb_root *root)
{
rb_erase(&chain->node, root);
free_stable_node(chain);
ksm_stable_node_chains--;
}
static void remove_node_from_stable_tree(struct stable_node *stable_node)
{
struct rmap_item *rmap_item;
/* check it's not STABLE_NODE_CHAIN or negative */
BUG_ON(stable_node->rmap_hlist_len < 0);
hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
if (rmap_item->hlist.next)
ksm_pages_sharing--;
else
ksm_pages_shared--;
VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
stable_node->rmap_hlist_len--;
put_anon_vma(rmap_item->anon_vma);
rmap_item->address &= PAGE_MASK;
cond_resched();
}
/*
* We need the second aligned pointer of the migrate_nodes
* list_head to stay clear from the rb_parent_color union
* (aligned and different than any node) and also different
* from &migrate_nodes. This will verify that future list.h changes
* don't break STABLE_NODE_DUP_HEAD.
*/
#if GCC_VERSION >= 40903 /* only recent gcc can handle it */
BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
#endif
if (stable_node->head == &migrate_nodes)
list_del(&stable_node->list);
else
stable_node_dup_del(stable_node);
free_stable_node(stable_node);
}
/*
* get_ksm_page: checks if the page indicated by the stable node
* is still its ksm page, despite having held no reference to it.
* In which case we can trust the content of the page, and it
* returns the gotten page; but if the page has now been zapped,
* remove the stale node from the stable tree and return NULL.
* But beware, the stable node's page might be being migrated.
*
* You would expect the stable_node to hold a reference to the ksm page.
* But if it increments the page's count, swapping out has to wait for
* ksmd to come around again before it can free the page, which may take
* seconds or even minutes: much too unresponsive. So instead we use a
* "keyhole reference": access to the ksm page from the stable node peeps
* out through its keyhole to see if that page still holds the right key,
* pointing back to this stable node. This relies on freeing a PageAnon
* page to reset its page->mapping to NULL, and relies on no other use of
* a page to put something that might look like our key in page->mapping.
* is on its way to being freed; but it is an anomaly to bear in mind.
*/
static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
{
struct page *page;
void *expected_mapping;
unsigned long kpfn;
expected_mapping = (void *)((unsigned long)stable_node |
PAGE_MAPPING_KSM);
again:
kpfn = READ_ONCE(stable_node->kpfn);
page = pfn_to_page(kpfn);
/*
* page is computed from kpfn, so on most architectures reading
* page->mapping is naturally ordered after reading node->kpfn,
* but on Alpha we need to be more careful.
*/
smp_read_barrier_depends();
if (READ_ONCE(page->mapping) != expected_mapping)
goto stale;
/*
* We cannot do anything with the page while its refcount is 0.
* Usually 0 means free, or tail of a higher-order page: in which
* case this node is no longer referenced, and should be freed;
* however, it might mean that the page is under page_freeze_refs().
* The __remove_mapping() case is easy, again the node is now stale;
* but if page is swapcache in migrate_page_move_mapping(), it might
* still be our page, in which case it's essential to keep the node.
*/
while (!get_page_unless_zero(page)) {
/*
* Another check for page->mapping != expected_mapping would
* work here too. We have chosen the !PageSwapCache test to
* optimize the common case, when the page is or is about to
* be freed: PageSwapCache is cleared (under spin_lock_irq)
* in the freeze_refs section of __remove_mapping(); but Anon
* page->mapping reset to NULL later, in free_pages_prepare().
*/
if (!PageSwapCache(page))
goto stale;
cpu_relax();
}
if (READ_ONCE(page->mapping) != expected_mapping) {
put_page(page);
goto stale;
}
if (lock_it) {
lock_page(page);
if (READ_ONCE(page->mapping) != expected_mapping) {
unlock_page(page);
put_page(page);
goto stale;
}
}
return page;
stale:
/*
* We come here from above when page->mapping or !PageSwapCache
* suggests that the node is stale; but it might be under migration.
* We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
* before checking whether node->kpfn has been changed.
*/
smp_rmb();
if (READ_ONCE(stable_node->kpfn) != kpfn)
goto again;
remove_node_from_stable_tree(stable_node);
return NULL;
}
/*
* Removing rmap_item from stable or unstable tree.
* This function will clean the information from the stable/unstable tree.
*/
static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
{
if (rmap_item->address & STABLE_FLAG) {
struct stable_node *stable_node;
struct page *page;
stable_node = rmap_item->head;
page = get_ksm_page(stable_node, true);
if (!page)
goto out;
hlist_del(&rmap_item->hlist);
unlock_page(page);
put_page(page);
if (!hlist_empty(&stable_node->hlist))
ksm_pages_sharing--;
else
ksm_pages_shared--;
VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
stable_node->rmap_hlist_len--;
put_anon_vma(rmap_item->anon_vma);
rmap_item->address &= PAGE_MASK;
} else if (rmap_item->address & UNSTABLE_FLAG) {
unsigned char age;
/*
* Usually ksmd can and must skip the rb_erase, because
* root_unstable_tree was already reset to RB_ROOT.
* But be careful when an mm is exiting: do the rb_erase
* if this rmap_item was inserted by this scan, rather
* than left over from before.
*/
age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
BUG_ON(age > 1);
if (!age)
rb_erase(&rmap_item->node,
root_unstable_tree + NUMA(rmap_item->nid));
ksm_pages_unshared--;
rmap_item->address &= PAGE_MASK;
}
out:
cond_resched(); /* we're called from many long loops */
}
static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
struct rmap_item **rmap_list)
{
while (*rmap_list) {
struct rmap_item *rmap_item = *rmap_list;
*rmap_list = rmap_item->rmap_list;
remove_rmap_item_from_tree(rmap_item);
free_rmap_item(rmap_item);
}
}
/*
* Though it's very tempting to unmerge rmap_items from stable tree rather
* than check every pte of a given vma, the locking doesn't quite work for
* that - an rmap_item is assigned to the stable tree after inserting ksm
* page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
* rmap_items from parent to child at fork time (so as not to waste time
* if exit comes before the next scan reaches it).
*
* Similarly, although we'd like to remove rmap_items (so updating counts
* and freeing memory) when unmerging an area, it's easier to leave that
* to the next pass of ksmd - consider, for example, how ksmd might be
* in cmp_and_merge_page on one of the rmap_items we would be removing.
*/
static int unmerge_ksm_pages(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
unsigned long addr;
int err = 0;
for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
if (ksm_test_exit(vma->vm_mm))
break;
if (signal_pending(current))
err = -ERESTARTSYS;
else
err = break_ksm(vma, addr);
}
return err;
}
#ifdef CONFIG_SYSFS
/*
* Only called through the sysfs control interface:
*/
static int remove_stable_node(struct stable_node *stable_node)
{
struct page *page;
int err;
page = get_ksm_page(stable_node, true);
if (!page) {
/*
* get_ksm_page did remove_node_from_stable_tree itself.
*/
return 0;
}
if (WARN_ON_ONCE(page_mapped(page))) {
/*
* This should not happen: but if it does, just refuse to let
* merge_across_nodes be switched - there is no need to panic.
*/
err = -EBUSY;
} else {
/*
* The stable node did not yet appear stale to get_ksm_page(),
* since that allows for an unmapped ksm page to be recognized
* right up until it is freed; but the node is safe to remove.
* This page might be in a pagevec waiting to be freed,
* or it might be PageSwapCache (perhaps under writeback),
* or it might have been removed from swapcache a moment ago.
*/
set_page_stable_node(page, NULL);
remove_node_from_stable_tree(stable_node);
err = 0;
}
unlock_page(page);
put_page(page);
return err;
}
static int remove_stable_node_chain(struct stable_node *stable_node,
struct rb_root *root)
{
struct stable_node *dup;
struct hlist_node *hlist_safe;
if (!is_stable_node_chain(stable_node)) {
VM_BUG_ON(is_stable_node_dup(stable_node));
if (remove_stable_node(stable_node))
return true;
else
return false;
}
hlist_for_each_entry_safe(dup, hlist_safe,
&stable_node->hlist, hlist_dup) {
VM_BUG_ON(!is_stable_node_dup(dup));
if (remove_stable_node(dup))
return true;
}
BUG_ON(!hlist_empty(&stable_node->hlist));
free_stable_node_chain(stable_node, root);
return false;
}
static int remove_all_stable_nodes(void)
{
struct stable_node *stable_node, *next;
int nid;
int err = 0;
for (nid = 0; nid < ksm_nr_node_ids; nid++) {
while (root_stable_tree[nid].rb_node) {
stable_node = rb_entry(root_stable_tree[nid].rb_node,
struct stable_node, node);
if (remove_stable_node_chain(stable_node,
root_stable_tree + nid)) {
err = -EBUSY;
break; /* proceed to next nid */
}
cond_resched();
}
}
list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
if (remove_stable_node(stable_node))
err = -EBUSY;
cond_resched();
}
return err;
}
static int unmerge_and_remove_all_rmap_items(void)
{
struct mm_slot *mm_slot;
struct mm_struct *mm;
struct vm_area_struct *vma;
int err = 0;
spin_lock(&ksm_mmlist_lock);
ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
struct mm_slot, mm_list);
spin_unlock(&ksm_mmlist_lock);
for (mm_slot = ksm_scan.mm_slot;
mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
mm = mm_slot->mm;
down_read(&mm->mmap_sem);
for (vma = mm->mmap; vma; vma = vma->vm_next) {
if (ksm_test_exit(mm))
break;
if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
continue;
err = unmerge_ksm_pages(vma,
vma->vm_start, vma->vm_end);
if (err)
goto error;
}
remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
up_read(&mm->mmap_sem);
spin_lock(&ksm_mmlist_lock);
ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
struct mm_slot, mm_list);
if (ksm_test_exit(mm)) {
hash_del(&mm_slot->link);
list_del(&mm_slot->mm_list);
spin_unlock(&ksm_mmlist_lock);
free_mm_slot(mm_slot);
clear_bit(MMF_VM_MERGEABLE, &mm->flags);
mmdrop(mm);
} else
spin_unlock(&ksm_mmlist_lock);
}
/* Clean up stable nodes, but don't worry if some are still busy */
remove_all_stable_nodes();
ksm_scan.seqnr = 0;
return 0;
error:
up_read(&mm->mmap_sem);
spin_lock(&ksm_mmlist_lock);
ksm_scan.mm_slot = &ksm_mm_head;
spin_unlock(&ksm_mmlist_lock);
return err;
}
#endif /* CONFIG_SYSFS */
static u32 calc_checksum(struct page *page)
{
u32 checksum;
void *addr = kmap_atomic(page);
checksum = jhash2(addr, PAGE_SIZE / 4, 17);
kunmap_atomic(addr);
return checksum;
}
static int memcmp_pages(struct page *page1, struct page *page2)
{
char *addr1, *addr2;
int ret;
addr1 = kmap_atomic(page1);
addr2 = kmap_atomic(page2);