forked from JuliaLang/julia
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexpr.jl
291 lines (243 loc) · 7.25 KB
/
expr.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
# This file is a part of Julia. License is MIT: https://julialang.org/license
## symbols ##
"""
gensym([tag])
Generates a symbol which will not conflict with other variable names.
"""
gensym() = ccall(:jl_gensym, Ref{Symbol}, ())
gensym(s::String) = ccall(:jl_tagged_gensym, Ref{Symbol}, (Ptr{UInt8}, Int32), s, sizeof(s))
gensym(ss::String...) = map(gensym, ss)
gensym(s::Symbol) =
ccall(:jl_tagged_gensym, Ref{Symbol}, (Ptr{UInt8}, Int32), s, ccall(:strlen, Csize_t, (Ptr{UInt8},), s))
"""
@gensym
Generates a gensym symbol for a variable. For example, `@gensym x y` is transformed into
`x = gensym("x"); y = gensym("y")`.
"""
macro gensym(names...)
blk = Expr(:block)
for name in names
push!(blk.args, :($(esc(name)) = gensym($(string(name)))))
end
push!(blk.args, :nothing)
return blk
end
## expressions ##
copy(e::Expr) = (n = Expr(e.head);
n.args = copy_exprargs(e.args);
n.typ = e.typ;
n)
# copy parts of an AST that the compiler mutates
copy_exprs(x::Expr) = copy(x)
copy_exprs(x::ANY) = x
copy_exprargs(x::Array{Any,1}) = Any[copy_exprs(a) for a in x]
==(x::Expr, y::Expr) = x.head === y.head && isequal(x.args, y.args)
==(x::QuoteNode, y::QuoteNode) = isequal(x.value, y.value)
"""
expand(x)
Takes the expression `x` and returns an equivalent expression in lowered form.
See also [`code_lowered`](@ref).
"""
expand(x::ANY) = ccall(:jl_expand, Any, (Any,), x)
"""
macroexpand(x)
Takes the expression `x` and returns an equivalent expression with all macros removed (expanded).
"""
macroexpand(x::ANY) = ccall(:jl_macroexpand, Any, (Any,), x)
"""
@macroexpand
Return equivalent expression with all macros removed (expanded).
There is a subtle difference between `@macroexpand` and `macroexpand` in that expansion takes place in
different contexts. This is best seen in the following example:
```jldoctest
julia> module M
macro m()
1
end
function f()
(@macroexpand(@m), macroexpand(:(@m)))
end
end
M
julia> macro m()
2
end
@m (macro with 1 method)
julia> M.f()
(1, 2)
```
With `@macroexpand` the expression expands where `@macroexpand` appears in the code (module
`M` in the example). With `macroexpand` the expression expands in the current module where
the code was finally called (REPL in the example).
Note that when calling `macroexpand` or `@macroexpand` directly from the REPL, both of these contexts coincide, hence there is no difference.
"""
macro macroexpand(code)
code_expanded = macroexpand(code)
QuoteNode(code_expanded)
end
## misc syntax ##
"""
eval([m::Module], expr::Expr)
Evaluate an expression in the given module and return the result. Every `Module` (except
those defined with `baremodule`) has its own 1-argument definition of `eval`, which
evaluates expressions in that module.
"""
Core.eval
"""
@inline
Give a hint to the compiler that this function is worth inlining.
Small functions typically do not need the `@inline` annotation,
as the compiler does it automatically. By using `@inline` on bigger functions,
an extra nudge can be given to the compiler to inline it.
This is shown in the following example:
```julia
@inline function bigfunction(x)
#=
Function Definition
=#
end
```
"""
macro inline(ex)
esc(isa(ex, Expr) ? pushmeta!(ex, :inline) : ex)
end
"""
@noinline
Prevents the compiler from inlining a function.
Small functions are typically inlined automatically.
By using `@noinline` on small functions, auto-inlining can be
prevented. This is shown in the following example:
```julia
@noinline function smallfunction(x)
#=
Function Definition
=#
end
```
"""
macro noinline(ex)
esc(isa(ex, Expr) ? pushmeta!(ex, :noinline) : ex)
end
macro pure(ex)
esc(isa(ex, Expr) ? pushmeta!(ex, :pure) : ex)
end
"""
@propagate_inbounds
Tells the compiler to inline a function while retaining the caller's inbounds context.
"""
macro propagate_inbounds(ex)
if isa(ex, Expr)
pushmeta!(ex, :inline)
pushmeta!(ex, :propagate_inbounds)
esc(ex)
else
esc(ex)
end
end
"""
@polly
Tells the compiler to apply the polyhedral optimizer Polly to a function.
"""
macro polly(ex)
esc(isa(ex, Expr) ? pushmeta!(ex, :polly) : ex)
end
## some macro utilities ##
function pushmeta!(ex::Expr, sym::Symbol, args::Any...)
if isempty(args)
tag = sym
else
tag = Expr(sym, args...)
end
inner = ex
while inner.head == :macrocall
inner = inner.args[end]::Expr
end
idx, exargs = findmeta(inner)
if idx != 0
push!(exargs[idx].args, tag)
else
body::Expr = inner.args[2]
unshift!(body.args, Expr(:meta, tag))
end
ex
end
function popmeta!(body::Expr, sym::Symbol)
body.head == :block || return false, []
popmeta!(body.args, sym)
end
popmeta!(arg, sym) = (false, [])
function popmeta!(body::Array{Any,1}, sym::Symbol)
idx, blockargs = findmeta_block(body, args -> findmetaarg(args,sym)!=0)
if idx == 0
return false, []
end
metaargs = blockargs[idx].args
i = findmetaarg(blockargs[idx].args, sym)
if i == 0
return false, []
end
ret = isa(metaargs[i], Expr) ? (metaargs[i]::Expr).args : []
deleteat!(metaargs, i)
isempty(metaargs) && deleteat!(blockargs, idx)
true, ret
end
# Find index of `sym` in a meta expression argument list, or 0.
function findmetaarg(metaargs, sym)
for i = 1:length(metaargs)
arg = metaargs[i]
if (isa(arg, Symbol) && (arg::Symbol) == sym) ||
(isa(arg, Expr) && (arg::Expr).head == sym)
return i
end
end
return 0
end
function is_short_function_def(ex)
ex.head == :(=) || return false
while length(ex.args) >= 1 && isa(ex.args[1], Expr)
(ex.args[1].head == :call) && return true
(ex.args[1].head == :where) || return false
ex = ex.args[1]
end
return false
end
function findmeta(ex::Expr)
if ex.head == :function || is_short_function_def(ex)
body::Expr = ex.args[2]
body.head == :block || error(body, " is not a block expression")
return findmeta_block(ex.args)
end
error(ex, " is not a function expression")
end
findmeta(ex::Array{Any,1}) = findmeta_block(ex)
function findmeta_block(exargs, argsmatch=args->true)
for i = 1:length(exargs)
a = exargs[i]
if isa(a, Expr)
if (a::Expr).head == :meta && argsmatch((a::Expr).args)
return i, exargs
elseif (a::Expr).head == :block
idx, exa = findmeta_block(a.args, argsmatch)
if idx != 0
return idx, exa
end
end
end
end
return 0, []
end
remove_linenums!(ex) = ex
function remove_linenums!(ex::Expr)
if ex.head === :body || ex.head === :block || ex.head === :quote
# remove line number expressions from metadata (not argument literal or inert) position
filter!(ex.args) do x
isa(x, Expr) && x.head === :line && return false
isa(x, LineNumberNode) && return false
return true
end
end
for subex in ex.args
remove_linenums!(subex)
end
return ex
end