forked from tidyverse/ggplot2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot.r
158 lines (146 loc) · 5.58 KB
/
plot.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#' Create a new ggplot plot.
#'
#' \code{ggplot()} initializes a ggplot object. It can be used to
#' declare the input data frame for a graphic and to specify the
#' set of plot aesthetics intended to be common throughout all
#' subsequent layers unless specifically overridden.
#'
#' \code{ggplot()} is typically used to construct a plot
#' incrementally, using the + operator to add layers to the
#' existing ggplot object. This is advantageous in that the
#' code is explicit about which layers are added and the order
#' in which they are added. For complex graphics with multiple
#' layers, initialization with \code{ggplot} is recommended.
#'
#' There are three common ways to invoke \code{ggplot}:
#' \itemize{
#' \item \code{ggplot(df, aes(x, y, <other aesthetics>))}
#' \item \code{ggplot(df)}
#' \item \code{ggplot()}
#' }
#' The first method is recommended if all layers use the same
#' data and the same set of aesthetics, although this method
#' can also be used to add a layer using data from another
#' data frame. See the first example below. The second
#' method specifies the default data frame to use for the plot,
#' but no aesthetics are defined up front. This is useful when
#' one data frame is used predominantly as layers are added,
#' but the aesthetics may vary from one layer to another. The
#' third method initializes a skeleton \code{ggplot} object which
#' is fleshed out as layers are added. This method is useful when
#' multiple data frames are used to produce different layers, as
#' is often the case in complex graphics.
#'
#' @param data Default dataset to use for plot. If not already a data.frame,
#' will be converted to one by \code{\link{fortify}}. If not specified,
#' must be suppled in each layer added to the plot.
#' @param mapping Default list of aesthetic mappings to use for plot.
#' If not specified, must be suppled in each layer added to the plot.
#' @param ... Other arguments passed on to methods. Not currently used.
#' @param environment If an variable defined in the aesthetic mapping is not
#' found in the data, ggplot will look for it in this environment. It defaults
#' to using the environment in which \code{ggplot()} is called.
#' @export
#' @examples
#' df <- data.frame(gp = factor(rep(letters[1:3], each = 10)),
#' y = rnorm(30))
#' # Compute sample mean and standard deviation in each group
#' ds <- plyr::ddply(df, "gp", plyr::summarise, mean = mean(y), sd = sd(y))
#'
#' # Declare the data frame and common aesthetics.
#' # The summary data frame ds is used to plot
#' # larger red points in a second geom_point() layer.
#' # If the data = argument is not specified, it uses the
#' # declared data frame from ggplot(); ditto for the aesthetics.
#' ggplot(df, aes(x = gp, y = y)) +
#' geom_point() +
#' geom_point(data = ds, aes(y = mean),
#' colour = 'red', size = 3)
#' # Same plot as above, declaring only the data frame in ggplot().
#' # Note how the x and y aesthetics must now be declared in
#' # each geom_point() layer.
#' ggplot(df) +
#' geom_point(aes(x = gp, y = y)) +
#' geom_point(data = ds, aes(x = gp, y = mean),
#' colour = 'red', size = 3)
#' # Set up a skeleton ggplot object and add layers:
#' ggplot() +
#' geom_point(data = df, aes(x = gp, y = y)) +
#' geom_point(data = ds, aes(x = gp, y = mean),
#' colour = 'red', size = 3) +
#' geom_errorbar(data = ds, aes(x = gp, y = mean,
#' ymin = mean - sd, ymax = mean + sd),
#' colour = 'red', width = 0.4)
ggplot <- function(data = NULL, mapping = aes(), ...,
environment = parent.frame()) {
UseMethod("ggplot")
}
#' @export
#' @rdname ggplot
#' @usage NULL
ggplot.default <- function(data = NULL, mapping = aes(), ...,
environment = parent.frame()) {
ggplot.data.frame(fortify(data, ...), mapping, environment = environment)
}
#' @export
#' @rdname ggplot
#' @usage NULL
ggplot.data.frame <- function(data, mapping = aes(), ...,
environment = parent.frame()) {
if (!missing(mapping) && !inherits(mapping, "uneval")) {
stop("Mapping should be created with aes or aes_string")
}
p <- structure(list(
data = data,
layers = list(),
scales = scales_list(),
mapping = mapping,
theme = list(),
coordinates = coord_cartesian(),
facet = facet_null(),
plot_env = environment
), class = c("gg", "ggplot"))
p$labels <- make_labels(mapping)
set_last_plot(p)
p
}
plot_clone <- function(plot) {
p <- plot
p$scales <- plot$scales$clone()
p
}
#' Reports whether x is a ggplot object
#' @param x An object to test
#' @keywords internal
#' @export
is.ggplot <- function(x) inherits(x, "ggplot")
#' Draw plot on current graphics device.
#'
#' @param x plot to display
#' @param newpage draw new (empty) page first?
#' @param vp viewport to draw plot in
#' @param ... other arguments not used by this method
#' @keywords hplot
#' @return Invisibly returns the result of \code{\link{ggplot_build}}, which
#' is a list with components that contain the plot itself, the data,
#' information about the scales, panels etc.
#' @export
#' @method print ggplot
print.ggplot <- function(x, newpage = is.null(vp), vp = NULL, ...) {
set_last_plot(x)
if (newpage) grid.newpage()
data <- ggplot_build(x)
gtable <- ggplot_gtable(data)
if (is.null(vp)) {
grid.draw(gtable)
} else {
if (is.character(vp)) seekViewport(vp) else pushViewport(vp)
grid.draw(gtable)
upViewport()
}
invisible(data)
}
#' @rdname print.ggplot
#' @method plot ggplot
#' @export
plot.ggplot <- print.ggplot