forked from PromtEngineer/localGPT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_localGPT.py
246 lines (209 loc) · 8.3 KB
/
run_localGPT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import logging
import click
import torch
from auto_gptq import AutoGPTQForCausalLM
from huggingface_hub import hf_hub_download
from langchain.chains import RetrievalQA
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.llms import HuggingFacePipeline, LlamaCpp
from langchain.memory import ConversationBufferMemory
from langchain.prompts import PromptTemplate
# from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain.vectorstores import Chroma
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig,
LlamaForCausalLM,
LlamaTokenizer,
pipeline,
)
from constants import CHROMA_SETTINGS, EMBEDDING_MODEL_NAME, PERSIST_DIRECTORY, MODEL_ID, MODEL_BASENAME
def load_model(device_type, model_id, model_basename=None):
"""
Select a model for text generation using the HuggingFace library.
If you are running this for the first time, it will download a model for you.
subsequent runs will use the model from the disk.
Args:
device_type (str): Type of device to use, e.g., "cuda" for GPU or "cpu" for CPU.
model_id (str): Identifier of the model to load from HuggingFace's model hub.
model_basename (str, optional): Basename of the model if using quantized models.
Defaults to None.
Returns:
HuggingFacePipeline: A pipeline object for text generation using the loaded model.
Raises:
ValueError: If an unsupported model or device type is provided.
"""
logging.info(f"Loading Model: {model_id}, on: {device_type}")
logging.info("This action can take a few minutes!")
if model_basename is not None:
if ".ggml" in model_basename:
logging.info("Using Llamacpp for GGML quantized models")
model_path = hf_hub_download(repo_id=model_id, filename=model_basename)
max_ctx_size = 2048
kwargs = {
"model_path": model_path,
"n_ctx": max_ctx_size,
"max_tokens": max_ctx_size,
}
if device_type.lower() == "mps":
kwargs["n_gpu_layers"] = 1000
if device_type.lower() == "cuda":
kwargs["n_gpu_layers"] = 1000
kwargs["n_batch"] = max_ctx_size
return LlamaCpp(**kwargs)
else:
# The code supports all huggingface models that ends with GPTQ and have some variation
# of .no-act.order or .safetensors in their HF repo.
logging.info("Using AutoGPTQForCausalLM for quantized models")
if ".safetensors" in model_basename:
# Remove the ".safetensors" ending if present
model_basename = model_basename.replace(".safetensors", "")
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
logging.info("Tokenizer loaded")
model = AutoGPTQForCausalLM.from_quantized(
model_id,
model_basename=model_basename,
use_safetensors=True,
trust_remote_code=True,
device="cuda:0",
use_triton=False,
quantize_config=None,
)
elif (
device_type.lower() == "cuda"
): # The code supports all huggingface models that ends with -HF or which have a .bin
# file in their HF repo.
logging.info("Using AutoModelForCausalLM for full models")
tokenizer = AutoTokenizer.from_pretrained(model_id)
logging.info("Tokenizer loaded")
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
trust_remote_code=True,
# max_memory={0: "15GB"} # Uncomment this line with you encounter CUDA out of memory errors
)
model.tie_weights()
else:
logging.info("Using LlamaTokenizer")
tokenizer = LlamaTokenizer.from_pretrained(model_id)
model = LlamaForCausalLM.from_pretrained(model_id)
# Load configuration from the model to avoid warnings
generation_config = GenerationConfig.from_pretrained(model_id)
# see here for details:
# https://huggingface.co/docs/transformers/
# main_classes/text_generation#transformers.GenerationConfig.from_pretrained.returns
# Create a pipeline for text generation
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
max_length=2048,
temperature=0,
top_p=0.95,
repetition_penalty=1.15,
generation_config=generation_config,
)
local_llm = HuggingFacePipeline(pipeline=pipe)
logging.info("Local LLM Loaded")
return local_llm
# chose device typ to run on as well as to show source documents.
@click.command()
@click.option(
"--device_type",
default="cuda" if torch.cuda.is_available() else "cpu",
type=click.Choice(
[
"cpu",
"cuda",
"ipu",
"xpu",
"mkldnn",
"opengl",
"opencl",
"ideep",
"hip",
"ve",
"fpga",
"ort",
"xla",
"lazy",
"vulkan",
"mps",
"meta",
"hpu",
"mtia",
],
),
help="Device to run on. (Default is cuda)",
)
@click.option(
"--show_sources",
"-s",
is_flag=True,
help="Show sources along with answers (Default is False)",
)
def main(device_type, show_sources):
"""
This function implements the information retrieval task.
1. Loads an embedding model, can be HuggingFaceInstructEmbeddings or HuggingFaceEmbeddings
2. Loads the existing vectorestore that was created by inget.py
3. Loads the local LLM using load_model function - You can now set different LLMs.
4. Setup the Question Answer retreival chain.
5. Question answers.
"""
logging.info(f"Running on: {device_type}")
logging.info(f"Display Source Documents set to: {show_sources}")
embeddings = HuggingFaceInstructEmbeddings(model_name=EMBEDDING_MODEL_NAME, model_kwargs={"device": device_type})
# uncomment the following line if you used HuggingFaceEmbeddings in the ingest.py
# embeddings = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL_NAME)
# load the vectorstore
db = Chroma(
persist_directory=PERSIST_DIRECTORY,
embedding_function=embeddings,
client_settings=CHROMA_SETTINGS,
)
retriever = db.as_retriever()
template = """Use the following pieces of context to answer the question at the end. If you don't know the answer,\
just say that you don't know, don't try to make up an answer.
{context}
{history}
Question: {question}
Helpful Answer:"""
prompt = PromptTemplate(input_variables=["history", "context", "question"], template=template)
memory = ConversationBufferMemory(input_key="question", memory_key="history")
llm = load_model(device_type, model_id=MODEL_ID, model_basename=MODEL_BASENAME)
qa = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
chain_type_kwargs={"prompt": prompt, "memory": memory},
)
# Interactive questions and answers
while True:
query = input("\nEnter a query: ")
if query == "exit":
break
# Get the answer from the chain
res = qa(query)
answer, docs = res["result"], res["source_documents"]
# Print the result
print("\n\n> Question:")
print(query)
print("\n> Answer:")
print(answer)
if show_sources: # this is a flag that you can set to disable showing answers.
# # Print the relevant sources used for the answer
print("----------------------------------SOURCE DOCUMENTS---------------------------")
for document in docs:
print("\n> " + document.metadata["source"] + ":")
print(document.page_content)
print("----------------------------------SOURCE DOCUMENTS---------------------------")
if __name__ == "__main__":
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)s - %(message)s", level=logging.INFO
)
main()