-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathsetup.py
123 lines (106 loc) · 3.95 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import io
import os
import re
import sys
import torch
from setuptools import setup, find_packages
from torch.utils.cpp_extension import BuildExtension, CppExtension, CUDAExtension
extra_compile_args = {
"cxx": ["-std=c++11", "-O3", "-fopenmp"],
"nvcc": ["-std=c++11", "-O3", "--compiler-options=-fopenmp"],
}
CC = os.getenv("CC", None)
if CC is not None:
extra_compile_args["nvcc"].append("-ccbin=" + CC)
def get_cuda_compile_archs(nvcc_flags=None):
"""Get the target CUDA architectures from CUDA_ARCH_LIST env variable"""
if nvcc_flags is None:
nvcc_flags = []
CUDA_ARCH_LIST = os.getenv("CUDA_ARCH_LIST", None)
if CUDA_ARCH_LIST is not None:
for arch in CUDA_ARCH_LIST.split(";"):
m = re.match(r"^([0-9.]+)(?:\(([0-9.]+)\))?(\+PTX)?$", arch)
assert m, "Wrong architecture list: %s" % CUDA_ARCH_LIST
com_arch = m.group(1).replace(".", "")
cod_arch = m.group(2).replace(".", "") if m.group(2) else com_arch
ptx = True if m.group(3) else False
nvcc_flags.extend(
["-gencode", "arch=compute_{},code=sm_{}".format(com_arch, cod_arch)]
)
if ptx:
nvcc_flags.extend(
[
"-gencode",
"arch=compute_{},code=compute_{}".format(com_arch, cod_arch),
]
)
return nvcc_flags
def get_requirements():
req_file = os.path.join(os.path.dirname(__file__), "requirements.txt")
with io.open(req_file, "r", encoding="utf-8") as f:
return [line.strip() for line in f]
def get_long_description():
readme_file = os.path.join(os.path.dirname(__file__), "README.md")
with io.open(readme_file, "r", encoding="utf-8") as f:
return f.read()
include_dirs = [
"{}/third-party/warp-ctc/include".format(
os.path.dirname(os.path.realpath(__file__))
)
]
sources = ["src/binding.cc"]
if torch.cuda.is_available():
sources += [
"third-party/warp-ctc/src/ctc_entrypoint.cu",
"third-party/warp-ctc/src/reduce.cu",
]
extra_compile_args["cxx"].append("-DWITH_CUDA")
extra_compile_args["nvcc"].append("-DWITH_CUDA")
extra_compile_args["nvcc"].extend(get_cuda_compile_archs())
Extension = CUDAExtension
else:
sources += ["third-party/warp-ctc/src/ctc_entrypoint.cpp"]
Extension = CppExtension
requirements = get_requirements()
long_description = get_long_description()
setup(
name="torch-baidu-ctc",
version="0.3.0",
description="PyTorch bindings for Baidu Warp-CTC",
long_description=long_description,
long_description_content_type="text/markdown",
url="https://github.com/jpuigcerver/pytorch-baidu-ctc",
author="Joan Puigcerver",
author_email="[email protected]",
license="Apache",
packages=find_packages(),
ext_modules=[
Extension(
name="torch_baidu_ctc._C",
sources=sources,
include_dirs=include_dirs,
extra_compile_args=extra_compile_args,
)
],
cmdclass={"build_ext": BuildExtension},
classifiers=[
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Intended Audience :: Science/Research",
"License :: OSI Approved :: MIT License",
"Programming Language :: Python :: 2",
"Programming Language :: Python :: 2.7",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.5",
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Topic :: Scientific/Engineering",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Topic :: Software Development",
"Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules",
],
setup_requires=requirements,
install_requires=requirements,
)