forked from jblomo/datamining290
-
Notifications
You must be signed in to change notification settings - Fork 8
/
2014-02-20-Bayes.html
453 lines (327 loc) · 8.38 KB
/
2014-02-20-Bayes.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
<!DOCTYPE html>
<html>
<head>
<title>Data Mining</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<style type="text/css">
@import url(http://fonts.googleapis.com/css?family=Droid+Serif);
@import url(http://fonts.googleapis.com/css?family=Yanone+Kaffeesatz);
body {
font-family: 'Droid Serif';
font-size: 25px;
}
.remark-slide-content {
padding: 1em 2em 1em 2em;
}
h1, h2, h3 {
font-family: 'Yanone Kaffeesatz';
font-weight: 400;
margin-top: 0;
margin-bottom: 0;
}
h1 { font-size: 3em; }
h2 { font-size: 1.8em; }
h3 { font-size: 1.4em; }
.footnote {
position: absolute;
bottom: 3em;
}
ul { margin: 8px;}
li p { line-height: 1.25em; }
.red { color: #fa0000; }
.large { font-size: 2em; }
a, a > code {
color: rgb(249, 38, 114);
text-decoration: none;
}
code {
-moz-border-radius: 3px;
-web-border-radius: 3px;
background: #e7e8e2;
color: black;
border-radius: 3px;
}
.tight-code {
font-size: 20px;
}
.white-background {
background-color: white;
padding: 10px;
display: block;
margin-left: auto;
margin-right: auto;
}
.limit-size img {
height: auto;
width: auto;
max-width: 1000px;
max-height: 500px;
}
em { color: #80cafa; }
.pull-left {
float: left;
width: 47%;
}
.pull-right {
float: right;
width: 47%;
}
.pull-right ~ p {
clear: both;
}
#slideshow .slide .content code {
font-size: 1.6em;
}
#slideshow .slide .content pre code {
font-size: 1.6em;
padding: 15px;
}
.inverse {
background: #272822;
color: #e3e3e3;
text-shadow: 0 0 20px #333;
}
.inverse h1, .inverse h2 {
color: #f3f3f3;
line-height: 1.6em;
}
/* Slide-specific styling */
#slide-inverse .footnote {
bottom: 12px;
left: 20px;
}
#slide-how .slides {
font-size: 1.6em;
position: absolute;
top: 151px;
right: 140px;
}
#slide-how .slides h3 {
margin-top: 0.2em;
}
#slide-how .slides .first, #slide-how .slides .second {
padding: 1px 20px;
height: 90px;
width: 120px;
-moz-box-shadow: 0 0 10px #777;
-webkit-box-shadow: 0 0 10px #777;
box-shadow: 0 0 10px #777;
}
#slide-how .slides .first {
background: #fff;
position: absolute;
top: 20%;
left: 20%;
z-index: 1;
}
#slide-how .slides .second {
position: relative;
background: #fff;
z-index: 0;
}
.center {
float: center;
}
/* Two-column layout */
.left-column {
width: 48%;
float: left;
}
.right-column {
width: 48%;
float: right;
}
.right-column img {
max-width: 120%;
max-height: 120%;
}
/* Tables */
table {
border-collapse: collapse;
margin: 0px;
}
table, th, td {
border: 1px solid white;
}
th, td {
padding: 7px;
}
</style>
</head>
<body>
<textarea id="source">
name: inverse
layout: true
class: left, top, inverse
---
## Classification: Bayes
---
## Confusion Matrix
+ What are the ways that classification can be wrong?
| | Predict: Positive | Predict: Negative |
|------------------|-------------------|-------------------|
| Actual: Positive | True Positive | False Negative |
| Actual: Negative | False Positive | True Negative |
???
## Obtain Data
+ How do we obtain this data?
---
## Testing Data
+ Data used to test a learned model
+ Test data was not used to learn
+ Where does test data come from?
<img src="img/stork.jpg"/>
???
## Not from storks
+ img: http://adamsparkadventures.blogspot.com/2011/09/stork-watch.html
---
## Training Data
+ Set aside a portion of training data to test with
+ Test data:
<img src="img/k-fold1.png"/>
---
## Set Aside Testing
<img src="img/k-fold2.png"/>
Testing Data | Training Data
???
## Colors
+ Red: Testing
+ Green: Training
---
## Cross Validation
<img src="img/k-fold3.png"/>
Train and test model with different subsets of data
???
## Testing the model
+ This is used to test the *model*
+ How well does it perform with a variety of inputs?
+ Is it robust against outliers
---
## K-Fold Validation
<img src="img/k-fold4.png"/>
Test against K sections of the data
???
## Statistical Significance
+ Similar to the concept in stats: the more distinct samples you have, the
better you know your data
---
## K-Fold Validation
<img src="img/k-fold5.png"/>
---
## Bayes Theorem
.white-background[
<img src="img/bayes.png"/>
]
Can calculate a posterior given priors
???
## Read
+ Probability of A given B equals probability of B given A times prob of A
divided prob of B
+ Importance is that we can figure out what future probabilities are based on
what we've already seen
---
## Spam
.white-background[
<img src="img/bayes-spam.png"/>
]
Find the probability of spam given it contains a particular word
???
## Words
+ What words would you associate with spam?
+ Are these the same across all people?
+ Why might you want to train a classifier per person?
---
## Multiple Words
+ How to calculate probabilities of multiple independent events occurring?
???
## Naive
+ Words are not independent
+ San? Francisco is more likely
---
## Multiple Words
+ How to calculate probabilities of multiple independent events occurring?
+ Model words as independent events
+ Multiply probabilities
???
## Naive
+ Words are not independent
+ San? Francisco is more likely
+ But works surprisingly well in practice
---
## Practical concerns
+ What is the probability of a word we've never seen before?
???
## Solutions
+ divide by 0. Instead, add 1 to all words
---
## Practical concerns
+ What is the probability of a word we've never seen before?
+ Underflow: multiplying small numbers eventually causes rounding to 0
???
## Solutions
+ use log of probabilities
---
## Practical concerns
+ What is the probability of a word we've never seen before?
+ Underflow: multiplying small numbers eventually causes rounding to 0
+ Normalizing words: v1agra
???
## Solutions
+ come up with rules
---
## Ensemble
+ Using multiple models simultaneously
+ Run all classifiers over new data, take majority vote
+ Netflix Prize won with combination of models from several teams
???
## Requirements
+ Nice thing is that the diversity of models is important, and not so much
the accuracy of any single model
---
## Bootstrap Aggregating
+ Bagging: training data collected with replacement
+ Learn models on different samples
+ Run models on new incoming data
<img src="img/bagging.png"/>
???
*TODO should both be indented?*
## Trade-offs
+ Fairly simple:
+ Majority vote
+ Train models independently
+ img: http://cse-wiki.unl.edu/wiki/index.php/Bagging_and_Boosting
---
## Boosting
+ Train classifier to catch what the last one missed
+ Train and test first classifier
+ Find classification failures
+ Weight those failures more heavily in training a new model
+ Weight models by their accuracy
???
## Trade-offs
+ Boosting can be susceptible to outliers
+ Takes longer to train
+ Observed to be more accurate
---
## Many Decision Trees
+ Train trees with random selection of attributes and a subset of the data
+ Combine trees using majority or weights
+ What to call many arbitrarily picked trees?
---
## Random Forests
+ Used successfully in many recent competitions
+ Carry over robustness properties from individual decision trees
+ Can be trained in parallel
<img src="img/green-forrest.jpg" width=600px />
???
## Parallel
+ Potentially good fit for MapReduce paradigms
</textarea>
<script src="production/remark-0.5.9.min.js" type="text/javascript">
</script>
<script type="text/javascript">
var slideshow = remark.create();
</script>
</body>
</html>