-
Notifications
You must be signed in to change notification settings - Fork 79
/
Copy pathmk_state_logic.ml
1036 lines (902 loc) · 33 KB
/
mk_state_logic.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(*
File: mk_state_logic.ml
Description: This file defines the state abstracted logical
operators used in unity and some theorems valid for
the combination of these operators.
Author: (c) Copyright 1989-2008 by Flemming Andersen
Date: October 23, 1989
Last Update: December 30, 2007
*)
(* loadt"aux_definitions.ml";; *)
let FALSE_def = new_definition (`(False:'a->bool) = \s:'a. F`);;
let TRUE_def = new_definition (`(True:'a->bool) = \s:'a. T`);;
let NOT_def1 = new_definition (`Not (p:'a->bool) = \s. ~p s`);;
let NOT_def2 = new_definition (`~* (p:'a->bool) = \s. ~p s`);;
let AND_def = new_infix_definition
("/\*", "/\\", `/\* (p:'a->bool) (q:'a->bool) = \s. (p s) /\ (q s)`, OP_FIX);;
let OR_def = new_infix_definition
("\/*", "\/", `\/* (p:'a->bool) (q:'a->bool) = \s. (p s) \/ (q s)`, OP_FIX);;
let FORALL_def = new_binder_definition
(`!* (P:'b->('a->bool)) = (\s. (!x. ((P x)s)))`) "!*";;
let EXISTS_def = new_binder_definition
(`?* (P:'b->('a->bool)) = (\s. (?x. ((P x)s)))`) "?*";;
let CHOICE_def = new_binder_definition
(`@* P = (\s:'a. (@x:'b. ((P x)s)))`) "@*";;
let IMPLIES_def = new_infix_definition
("==>*", "==>", `==>* (p:'a->bool) (q:'a->bool) = \s. (p s) ==> (q s)`, OP_FIX);;
let LESS_def = new_infix_definition
("<*", "<", `<* (p:'a->num) (q:'a->num) = \s. (p s) < (q s)`, OP_FIX);;
let GREATER_def = new_infix_definition
(">*", ">", `>* (p:'a->num) (q:'a->num) = \s. (p s) > (q s)`, OP_FIX);;
let LESS_EQ_def = new_infix_definition
("<=*", "<=", `<=* (p:'a->num) (q:'a->num) = \s. (p s) <= (q s)`, OP_FIX);;
let GREATER_EQ_def = new_infix_definition
(">=*", ">=", `>=* (p:'a->num) (q:'a->num) = \s. (p s) >= (q s)`, OP_FIX);;
let EQ_def = new_infix_definition
("=*", "=", `=* (p:'a->'b) (q:'a->'b) = \s. (p s) = (q s)`, OP_FIX);;
let NEQ_def = new_infix_definition
("<>*", "=", `<>* (p:'a->'b) (q:'a->'b) = \s. ~((p s) = (q s))`, OP_FIX);;
let GE_def = new_infix_definition
("=>*", "<=>", `=>* (p:'a->bool) (r1:'a->'b) (r2:'a->'b) =
\s. if (p s) then r1 s else r2 s`, OP_FIX);;
let PLUS_def = new_infix_definition
("+*", "+", `+* (p:'a->num) (q:'a->num) = \s. (p s) + (q s)`, OP_FIX);;
let SUB_def = new_infix_definition
("-*", "-", `-* (p:'a->num) (q:'a->num) = \s. (p s) - (q s)`, OP_FIX);;
let MUL_def = new_infix_definition
("**", "*", `(**) (p:'a->num) (q:'a->num) = \s. ((p s) * (q s))`, OP_FIX);;
let SUC_def = new_definition
(`Suc (p:'a->num) = \s. SUC (p s)`);;
let PRE_def = new_definition
(`Pre (p:'a->num) = \s. PRE (p s)`);;
let MOD_def = new_infix_definition
("%*", "MOD", `%* (p:'a->num) (q:'a->num) = \s. (p s) MOD (q s)`, OP_FIX);;
let DIV_def = new_infix_definition
("/*", "/", `/* (p:'a->num) (q:'a->num) = \s. (p s) DIV (q s)`, OP_FIX);;
let EXP_def = new_infix_definition
("***", "EXP", `*** (p:'a->num) (q:'a->num) = \s. (p s) EXP (q s)`, OP_FIX);;
(* State dependent index *)
(* Weakness in defining priority: does o have same prio as Ind? *)
let IND_def = new_infix_definition
("Ind", "o", `Ind (a:'a->('b->'c)) (i:'a->'b) = \s. (a s) (i s)`, OP_FIX);;
(* More State dependent operators to be defined ??? *)
(* Be aware that (!i :: i <= m. P i) = (!i. i <= m ==> P i) *)
let FORALL_LE_def = new_definition
(`!<=* (P:num->('a->bool)) m = (\s:'a. (!i. i <= m ==> ((P i)s)))`);;
(* Be aware that ?i :: i <= m. P i == ?i. i <= m /\ P i *)
let EXISTS_LE_def = new_definition
(`?<=* (P:num->('a->bool)) m = (\s:'a. (?i. i <= m /\ ((P i)s)))`);;
let EXISTS_LT_def = new_definition
(`?<* (P:num->('a->bool)) m = (\s:'a. (?i. i < m /\ ((P i)s)))`);;
let AND_LE_N_def = new_recursive_definition
num_RECURSION
(`(!P. /<=\* P 0 = (P:num->('a->bool)) 0) /\
(!P. /<=\* P (SUC i) = ((/<=\* P i) /\* (P (SUC i))))`);;
let OR_LE_N_def = new_recursive_definition
num_RECURSION
(`(!P. \<=/* P 0 = (P:num->('a->bool)) 0) /\
(!P. (\<=/* P (SUC i)) = ((\<=/* P i) \/* (P (SUC i))))`);;
let AND_LT_N_def = new_recursive_definition
num_RECURSION
(`(!P. /<\* P 0 = (False:'a->bool)) /\
(!P. /<\* P (SUC i) = ((/<\* P i) /\* (P i)))`);;
let OR_LT_N_def = new_recursive_definition
num_RECURSION
(`(!P. \</* P 0 = (False:'a->bool)) /\
(!P. \</* P (SUC i) = ((\</* P i) \/* (P i)))`);;
(*-------------------------------------------------------------------------*)
(* Theorems valid in this theory *)
(*-------------------------------------------------------------------------*)
let s = `s:'a`;;
let p = `p:'a->bool`;;
let q = `q:'a->bool`;;
let r = `r:'a->bool`;;
let i = `i:num`;;
let P = `P:num->('a->bool)`;;
let IMPLY_WEAK_lemma1 = prove_thm
("IMPLY_WEAK_lemma1",
(`!p q p' q' (s:'a).
( (((p /\* q') \/* (p' /\* q)) \/* (q /\* q')) s ) ==> ((q \/* q') s)`),
REPEAT(GEN_TAC) THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [(SYM (SPEC_ALL DISJ_ASSOC))] THEN
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC [];
ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []]);;
let IMPLY_WEAK_lemma2 = prove_thm
("IMPLY_WEAK_lemma2",
`!p q p' q' (s:'a).
((((Not p) /\* q') \/* ((Not p') /\* q)) \/* (q /\* q'))s
==>
(q \/* q')s`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; AND_def; OR_def] THEN
BETA_TAC THEN
REWRITE_TAC [GEN_ALL (SYM (SPEC_ALL CONJ_ASSOC));
SYM (SPEC_ALL DISJ_ASSOC);
NOT_CLAUSES;
DE_MORGAN_THM] THEN
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC [];
ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []]);;
let IMPLY_WEAK_lemma3 = prove_thm
("IMPLY_WEAK_lemma3",
`!p q r (s:'a).
((((Not p) /\* r) \/* ((Not q) /\* q)) \/* (q /\* r))s
==>
r s`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [(SYM (SPEC_ALL DISJ_ASSOC))] THEN
REPEAT STRIP_TAC THEN
RES_TAC);;
let IMPLY_WEAK_lemma4 = prove_thm
("IMPLY_WEAK_lemma4",
`!p q p' q' r r' (s:'a).
((((Not(p \/* p')) /\* (p \/* r')) \/*
((Not(q \/* q')) /\* (q \/* r))) \/*
((q \/* r) /\* (p \/* r')))s
==>
((p /\* q) \/* r \/* r')s`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [SYM (SPEC_ALL DISJ_ASSOC);
GEN_ALL (SYM (SPEC_ALL CONJ_ASSOC));
NOT_CLAUSES;
DE_MORGAN_THM] THEN
REPEAT STRIP_TAC THEN
RES_TAC THEN ASM_REWRITE_TAC []);;
let IMPLY_WEAK_lemma5 = prove_thm
("IMPLY_WEAK_lemma5",
`!p q r (s:'a).
((p /\* r) \/* (((p \/* q) /\* (q \/* r)) \/* r)) s
==>
(q \/* r) s`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN
RES_TAC THEN ASM_REWRITE_TAC []);;
let IMPLY_WEAK_lemma6 = prove_thm
("IMPLY_WEAK_lemma6",
`!p q b r (s:'a).
((r /\* q) \/* (p /\* b) \/* (b /\* q)) s
==>
((q /\* r) \/* b) s`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);;
let IMPLY_WEAK_lemma7 = prove_thm
("IMPLY_WEAK_lemma7",
`!p q b r (s:'a).
(((r /\* q) \/* ((r /\* p) /\* b)) \/* (b /\* q)) s
==>
((q /\* r) \/* b) s`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);;
let CONJ_COMM_DISJ_lemma_a = TAC_PROOF
(([],
`!p q r (s:'a).
(r s /\ q s) \/ p s
==>
(q s /\ r s) \/ p s`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let CONJ_COMM_DISJ_lemma_b = TAC_PROOF
(([],
`!p q r (s:'a).
(q s /\ r s) \/ p s
==>
(r s /\ q s) \/ p s`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let CONJ_COMM_DISJ_lemma = TAC_PROOF
(([],
`!p q r (s:'a).
(r s /\ q s) \/ p s
<=> (q s /\ r s) \/ p s`),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
(SPEC_ALL CONJ_COMM_DISJ_lemma_a)
(SPEC_ALL CONJ_COMM_DISJ_lemma_b)));;
let AND_COMM_OR_lemma = prove_thm
("AND_COMM_OR_lemma",
`!(p:'a->bool) q r. ((r /\* q) \/* p) = ((q /\* r) \/* p)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] CONJ_COMM_DISJ_lemma)));;
let CONJ_DISJ_COMM_lemma_a = TAC_PROOF
(([],
`!p q r (s:'a).
(p s /\ (r s \/ q s))
==>
(p s /\ (q s \/ r s))`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let CONJ_DISJ_COMM_lemma_b = TAC_PROOF
(([],
`!p q r (s:'a).
(p s /\ (q s \/ r s))
==>
(p s /\ (r s \/ q s))`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let CONJ_DISJ_COMM_lemma = TAC_PROOF
(([],
`!p q r (s:'a).
(p s /\ (r s \/ q s))
= (p s /\ (q s \/ r s))`),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
(SPEC_ALL CONJ_DISJ_COMM_lemma_a)
(SPEC_ALL CONJ_DISJ_COMM_lemma_b)));;
let AND_OR_COMM_lemma = prove_thm
("AND_OR_COMM_lemma",
`!(p:'a->bool) q r.
p /\* (r \/* q)
= p /\* (q \/* r)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] CONJ_DISJ_COMM_lemma)));;
let DISJ_COMM_CONJ_lemma_a = TAC_PROOF
(([],
`!p q r (s:'a).
(r s \/ q s) /\ p s
==>
(q s \/ r s) /\ p s`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_COMM_CONJ_lemma_b = TAC_PROOF
(([],
`!p q r (s:'a).
(q s \/ r s) /\ p s
==>
(r s \/ q s) /\ p s`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_COMM_CONJ_lemma = TAC_PROOF
(([],
`!p q r (s:'a).
(r s \/ q s) /\ p s
<=> (q s \/ r s) /\ p s`),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
(SPEC_ALL DISJ_COMM_CONJ_lemma_a)
(SPEC_ALL DISJ_COMM_CONJ_lemma_b)));;
let OR_COMM_AND_lemma = prove_thm
("OR_COMM_AND_lemma",
`!(p:'a->bool) q r.
(r \/* q) /\* p
= (q \/* r) /\* p`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] DISJ_COMM_CONJ_lemma)));;
let DISJ_COMM_DISJ_lemma_a = TAC_PROOF
(([],
`!p q r (s:'a).
(r s \/ q s) \/ p s
==>
(q s \/ r s) \/ p s`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_COMM_DISJ_lemma_b = TAC_PROOF
(([],
`!p q r (s:'a).
(q s \/ r s) \/ p s
==>
(r s \/ q s) \/ p s`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_COMM_DISJ_lemma = TAC_PROOF
(([],
`!(p:'a->bool) q r s. (r s \/ q s) \/ p s <=> (q s \/ r s) \/ p s`),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
(SPEC_ALL DISJ_COMM_DISJ_lemma_a)
(SPEC_ALL DISJ_COMM_DISJ_lemma_b)));;
let OR_COMM_OR_lemma = prove_thm
("OR_COMM_OR_lemma",
`!(p:'a->bool) q r. (r \/* q) \/* p = (q \/* r) \/* p`,
REPEAT GEN_TAC THEN
REWRITE_TAC [OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] DISJ_COMM_DISJ_lemma)));;
let DISJ_DISJ_COMM_lemma_a = TAC_PROOF
(([], `!p q r (s:'a). p s \/ (r s \/ q s) ==> p s \/ (q s \/ r s)`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_DISJ_COMM_lemma_b = TAC_PROOF
(([], `!p q r (s:'a). p s \/ (q s \/ r s) ==> p s \/ (r s \/ q s)`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_DISJ_COMM_lemma = TAC_PROOF
(([], `!p q r (s:'a). p s \/ (r s \/ q s) <=> p s \/ (q s \/ r s) `),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
(SPEC_ALL DISJ_DISJ_COMM_lemma_a)
(SPEC_ALL DISJ_DISJ_COMM_lemma_b)));;
let OR_OR_COMM_lemma = prove_thm
("OR_OR_COMM_lemma",
(`!(p:'a->bool) q r. p \/* (r \/* q) = p \/* (q \/* r)`),
REPEAT GEN_TAC THEN
REWRITE_TAC [OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] DISJ_DISJ_COMM_lemma)));;
let CONJ_COMM_CONJ_lemma_a = TAC_PROOF
(([], `!p q r (s:'a). (r s /\ q s) /\ p s ==> (q s /\ r s) /\ p s`),
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);;
let CONJ_COMM_CONJ_lemma_b = TAC_PROOF
(([], `!p q r (s:'a). (q s /\ r s) /\ p s ==> (r s /\ q s) /\ p s`),
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);;
let CONJ_COMM_CONJ_lemma = TAC_PROOF
(([], `!p q r (s:'a). (r s /\ q s) /\ p s <=> (q s /\ r s) /\ p s`),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
(SPEC_ALL CONJ_COMM_CONJ_lemma_a)
(SPEC_ALL CONJ_COMM_CONJ_lemma_b)));;
let AND_COMM_AND_lemma = prove_thm
("AND_COMM_AND_lemma",
`!(p:'a->bool) q r. (r /\* q) /\* p = (q /\* r) /\* p`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] CONJ_COMM_CONJ_lemma)));;
let CONJ_CONJ_COMM_lemma_a = TAC_PROOF
(([], `!p q r (s:'a). p s /\ (r s /\ q s) ==> p s /\ (q s /\ r s)`),
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);;
let CONJ_CONJ_COMM_lemma_b = TAC_PROOF
(([], `!p q r (s:'a). p s /\ (q s /\ r s) ==> p s /\ (r s /\ q s)`),
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);;
let CONJ_CONJ_COMM_lemma = TAC_PROOF
(([], `!p q r (s:'a). p s /\ (r s /\ q s) <=> p s /\ (q s /\ r s) `),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
(SPEC_ALL CONJ_CONJ_COMM_lemma_a)
(SPEC_ALL CONJ_CONJ_COMM_lemma_b)));;
let AND_AND_COMM_lemma = prove_thm
("AND_AND_COMM_lemma",
`!(p:'a->bool) q r. p /\* (r /\* q) = p /\* (q /\* r)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] CONJ_CONJ_COMM_lemma)));;
let DISJ_CONJ_COMM_lemma_a = TAC_PROOF
(([], `!p q r (s:'a). p s \/ (r s /\ q s) ==> p s \/ (q s /\ r s)`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_CONJ_COMM_lemma_b = TAC_PROOF
(([], `!p q r (s:'a). p s \/ (q s /\ r s) ==> p s \/ (r s /\ q s)`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_CONJ_COMM_lemma = TAC_PROOF
(([], `!p q r (s:'a). p s \/ (r s /\ q s) <=> p s \/ (q s /\ r s)`),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (IMP_ANTISYM_RULE
(SPEC_ALL DISJ_CONJ_COMM_lemma_a)
(SPEC_ALL DISJ_CONJ_COMM_lemma_b)));;
let OR_AND_COMM_lemma = prove_thm
("OR_AND_COMM_lemma",
`!(p:'a->bool) q r. p \/* (r /\* q) = p \/* (q /\* r)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] DISJ_CONJ_COMM_lemma)));;
let NOT_NOT_lemma = prove_thm
("NOT_NOT_lemma",
`!(p:'a->bool). (Not (Not p)) = p`,
REWRITE_TAC [NOT_def1] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [NOT_CLAUSES; ETA_AX]);;
let DISJ_COMM_lemma = TAC_PROOF
(([], `!p q (s:'a). p s \/ q s <=> q s \/ p s`),
REPEAT STRIP_TAC THEN
STRIP_ASSUME_TAC
(SPECL [`(p (s:'a)):bool`; `(q (s:'a)):bool`] DISJ_SYM));;
let OR_COMM_lemma = prove_thm
("OR_COMM_lemma",
`!(p:'a->bool) q. (p \/* q) = (q \/* p)`,
REPEAT STRIP_TAC THEN
REWRITE_TAC [OR_def] THEN
ASSUME_TAC DISJ_COMM_lemma THEN
STRIP_ASSUME_TAC
(MK_ABS (SPECL [p;q]
(ASSUME (`!(p:'a->bool) q s. p s \/ q s <=> q s \/ p s`)))));;
let OR_OR_lemma = prove_thm
("OR_OR_lemma",
`!p:'a->bool. p \/* p = p`,
GEN_TAC THEN REWRITE_TAC [OR_def; ETA_AX]);;
let DISJ_ASSOC_lemma = TAC_PROOF
(([], `!p q r (s:'a). ((p s \/ q s) \/ r s) <=> (p s \/ (q s \/ r s))`),
REWRITE_TAC [(SYM (SPEC_ALL DISJ_ASSOC))]);;
let OR_ASSOC_lemma = prove_thm
("OR_ASSOC_lemma",
(`!(p:'a->bool) q r. (p \/* q) \/* r = p \/* (q \/* r)`),
REPEAT STRIP_TAC THEN REWRITE_TAC [OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
ASSUME_TAC DISJ_ASSOC_lemma THEN
STRIP_ASSUME_TAC
(MK_ABS (SPECL [p;q;r]
(ASSUME (`!p q r (s:'a).
((p s \/ q s) \/ r s) <=> (p s \/ (q s \/ r s))`)))));;
let CONJ_WEAK_lemma = TAC_PROOF
(([], `!p q (s:'a). p s /\ q s ==> q s`),
REPEAT STRIP_TAC THEN RES_TAC);;
let AND_IMPLY_WEAK_lemma = prove_thm
("AND_IMPLY_WEAK_lemma",
`!p q (s:'a). (p /\* q) s ==> q s`,
REWRITE_TAC [AND_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [CONJ_WEAK_lemma]);;
let SYM_CONJ_WEAK_lemma = TAC_PROOF
(([], `!p q (s:'a). p s /\ q s ==> p s`),
REPEAT STRIP_TAC THEN RES_TAC);;
let SYM_AND_IMPLY_WEAK_lemma = prove_thm
("SYM_AND_IMPLY_WEAK_lemma",
`!p q (s:'a). (p /\* q) s ==> p s`,
REWRITE_TAC [AND_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [SYM_CONJ_WEAK_lemma]);;
let OR_IMPLY_WEAK_lemma = prove_thm
("OR_IMPLY_WEAK_lemma",
`!p q (s:'a). p s ==> (p \/* q) s`,
REWRITE_TAC [OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC []);;
let SYM_OR_IMPLY_WEAK_lemma = prove_thm
("SYM_OR_IMPLY_WEAK_lemma",
`!p q (s:'a). p s ==> (q \/* p) s`,
REWRITE_TAC [OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC []);;
let IMPLY_WEAK_AND_lemma = prove_thm
("IMPLY_WEAK_AND_lemma",
`!(p:'a->bool) q r.
(!s. p s ==> q s)
==>
(!s. (p /\* r) s ==> (q /\* r) s)`,
REWRITE_TAC [AND_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THENL
[RES_TAC;
RES_TAC THEN
ASM_REWRITE_TAC []]);;
let IMPLY_WEAK_OR_lemma = prove_thm
("IMPLY_WEAK_OR_lemma",
`!(p:'a->bool) q r.
(!s. p s ==> q s)
==>
(!s. (p \/* r) s ==> (q \/* r) s)`,
REWRITE_TAC [OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THENL
[RES_TAC THEN
ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []]);;
let AND_AND_lemma = prove_thm
("AND_AND_lemma",
`!p:'a->bool. p /\* p = p`,
REWRITE_TAC [AND_def; ETA_AX]);;
let CONJ_COMM_lemma = TAC_PROOF
(([],
`!p q (s:'a). (p s /\ q s) <=> (q s /\ p s)`),
REPEAT GEN_TAC THEN
STRIP_ASSUME_TAC (SPECL [`(p:'a->bool) s`; `(q:'a->bool) s`] CONJ_SYM));;
let AND_COMM_lemma = prove_thm
("AND_COMM_lemma",
(`!(p:'a->bool) q. (p /\* q) = (q /\* p)`),
REWRITE_TAC [AND_def] THEN
REPEAT GEN_TAC THEN
ASSUME_TAC CONJ_COMM_lemma THEN
STRIP_ASSUME_TAC
(MK_ABS (SPECL [p;q]
(ASSUME (`!p q (s:'a). p s /\ q s <=> q s /\ p s`)))));;
let CONJ_ASSOC_lemma = TAC_PROOF
(([],
`!p q r (s:'a). ((p s /\ q s) /\ r s) <=> (p s /\ (q s /\ r s))`),
REWRITE_TAC [GEN_ALL (SYM (SPEC_ALL CONJ_ASSOC))]);;
let AND_ASSOC_lemma = prove_thm
("AND_ASSOC_lemma",
`!(p:'a->bool) q r. (p /\* q) /\* r = p /\* (q /\* r)`,
REPEAT GEN_TAC THEN REWRITE_TAC [AND_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
ASSUME_TAC CONJ_ASSOC_lemma THEN
STRIP_ASSUME_TAC
(MK_ABS (SPECL [p;q;r]
(ASSUME (`!p q r (s:'a).
((p s /\ q s) /\ r s) <=> (p s /\ (q s /\ r s))`)))));;
let NOT_True_lemma = prove_thm
("NOT_True_lemma",
`Not (True:'a->bool) = False`,
REWRITE_TAC [NOT_def1; TRUE_def; FALSE_def; ETA_AX]);;
let NOT_False_lemma = prove_thm
("NOT_False_lemma",
`Not (False:'a->bool) = True`,
REWRITE_TAC [NOT_def1; TRUE_def; FALSE_def; ETA_AX]);;
let AND_True_lemma = prove_thm
("AND_True_lemma",
`!p:'a->bool. p /\* True = p`,
REWRITE_TAC [AND_def; TRUE_def; ETA_AX]);;
let OR_True_lemma = prove_thm
("OR_True_lemma",
`!p:'a->bool. p \/* True = True`,
REWRITE_TAC [OR_def; TRUE_def; ETA_AX]);;
let AND_False_lemma = prove_thm
("AND_False_lemma",
`!p:'a->bool. p /\* False = False`,
REWRITE_TAC [AND_def; FALSE_def; ETA_AX]);;
let OR_False_lemma = prove_thm
("OR_False_lemma",
`!p:'a->bool. p \/* False = p`,
REWRITE_TAC [OR_def; FALSE_def; ETA_AX]);;
let P_OR_NOT_P_lemma = prove_thm
("P_OR_NOT_P_lemma",
`!p:'a->bool. p \/* (Not p) = True`,
REWRITE_TAC [OR_def; NOT_def1; TRUE_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [EXCLUDED_MIDDLE; OR_CLAUSES; NOT_CLAUSES; ETA_AX]);;
let P_AND_NOT_P_lemma = prove_thm
("P_AND_NOT_P_lemma",
`!p:'a->bool. p /\* (Not p) = False`,
REWRITE_TAC [AND_def; NOT_def1; FALSE_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [NOT_AND; AND_CLAUSES; NOT_CLAUSES; ETA_AX]);;
let CONJ_COMPL_DISJ_lemma1 = TAC_PROOF
(([],
`!p q. p /\ ~q \/ p /\ q ==> p`),
REPEAT STRIP_TAC);;
let CONJ_COMPL_DISJ_lemma2 = TAC_PROOF
(([],
`!p q. p ==> p /\ ~q \/ p /\ q`),
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC [] THEN
PURE_ONCE_REWRITE_TAC [DISJ_SYM] THEN
REWRITE_TAC [EXCLUDED_MIDDLE]);;
let CONJ_COMPL_DISJ_lemma = TAC_PROOF
(([],
`!p q. p /\ ~q \/ p /\ q <=> p`),
REWRITE_TAC [IMP_ANTISYM_RULE
(SPEC_ALL CONJ_COMPL_DISJ_lemma1)
(SPEC_ALL CONJ_COMPL_DISJ_lemma2)]);;
let AND_COMPL_OR_lemma = prove_thm
("AND_COMPL_OR_lemma",
`!(p:'a->bool) q. ((p /\* (Not q)) \/* (p /\* q)) = p`,
REWRITE_TAC [NOT_def1; AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [CONJ_COMPL_DISJ_lemma; ETA_AX]);;
let DISJ_NOT_CONJ_lemma1 = TAC_PROOF
(([],
`!p q. (p \/ q) /\ ~q ==> p /\ ~q`),
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC [] THEN RES_TAC);;
let DISJ_NOT_CONJ_lemma2 = TAC_PROOF
(([],
`!p q. p /\ ~q ==> (p \/ q) /\ ~q`),
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC [] THEN RES_TAC);;
let DISJ_NOT_CONJ_lemma = TAC_PROOF
(([], `!p q. (p \/ q) /\ ~q <=> p /\ ~q`),
REWRITE_TAC [IMP_ANTISYM_RULE
(SPEC_ALL DISJ_NOT_CONJ_lemma1)
(SPEC_ALL DISJ_NOT_CONJ_lemma2)]);;
let OR_NOT_AND_lemma = prove_thm
("OR_NOT_AND_lemma",
`!(p:'a->bool) q. ((p \/* q) /\* (Not q)) = p /\* (Not q)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [DISJ_NOT_CONJ_lemma]);;
let P_CONJ_Q_DISJ_Q_lemma1 = TAC_PROOF
(([], `!(p:'a->bool) q s. (p s /\ q s) \/ q s ==> q s`),
REPEAT STRIP_TAC);;
let P_CONJ_Q_DISJ_Q_lemma2 = TAC_PROOF
(([], `!(p:'a->bool) q s. q s ==> (p s /\ q s) \/ q s`),
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);;
let P_CONJ_Q_DISJ_Q_lemma = TAC_PROOF
(([], `!(p:'a->bool) q s. (p s /\ q s) \/ q s <=> q s`),
ASM_REWRITE_TAC [IMP_ANTISYM_RULE
(SPEC_ALL P_CONJ_Q_DISJ_Q_lemma1)
(SPEC_ALL P_CONJ_Q_DISJ_Q_lemma2)]);;
let P_AND_Q_OR_Q_lemma = prove_thm
("P_AND_Q_OR_Q_lemma",
`!(p:'a->bool) q. (p /\* q) \/* q = q`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [GEN_ALL (MK_ABS (SPECL [p;q] P_CONJ_Q_DISJ_Q_lemma)); ETA_AX]);;
let P_DISJ_Q_CONJ_Q_lemma1 = TAC_PROOF
(([], `!(p:'a->bool) q s. (p s \/ q s) /\ q s ==> q s`),
REPEAT STRIP_TAC);;
let P_DISJ_Q_CONJ_Q_lemma2 = TAC_PROOF
(([], `!(p:'a->bool) q s. q s ==> (p s \/ q s) /\ q s`),
REPEAT STRIP_TAC THEN ASM_REWRITE_TAC []);;
let P_DISJ_Q_CONJ_Q_lemma = TAC_PROOF
(([], `!(p:'a->bool) q s. (p s \/ q s) /\ q s <=> q s`),
ASM_REWRITE_TAC [IMP_ANTISYM_RULE
(SPEC_ALL P_DISJ_Q_CONJ_Q_lemma1)
(SPEC_ALL P_DISJ_Q_CONJ_Q_lemma2)]);;
let P_OR_Q_AND_Q_lemma = prove_thm
("P_OR_Q_AND_Q_lemma",
`!(p:'a->bool) q. (p \/* q) /\* q = q`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [GEN_ALL (MK_ABS (SPECL [p;q] P_DISJ_Q_CONJ_Q_lemma)); ETA_AX]);;
let NOT_OR_AND_NOT_lemma = prove_thm
("NOT_OR_AND_NOT_lemma",
`!(p:'a->bool) q. Not (p \/* q) = (Not p) /\* (Not q)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [NOT_CLAUSES;
DE_MORGAN_THM]);;
let NOT_AND_OR_NOT_lemma = prove_thm
("NOT_AND_OR_NOT_lemma",
`!(p:'a->bool) q. Not (p /\* q) = (Not p) \/* (Not q)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [NOT_CLAUSES;
DE_MORGAN_THM]);;
let NOT_IMPLY_OR_lemma = prove_thm
("NOT_IMPLY_OR_lemma",
`!(p:'a->bool) q.
(!s. (Not p)s ==> q s)
= (!s. (p \/* q)s)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [IMP_DISJ_THM]);;
let IMPLY_OR_lemma = prove_thm
("IMPLY_OR_lemma",
`!(p:'a->bool) q. (!s. p s ==> q s) = (!s. ((Not p) \/* q)s)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [IMP_DISJ_THM]);;
let OR_IMPLY_lemma = prove_thm
("OR_IMPLY_lemma",
`!(p:'a->bool) q. (!s. (p \/* q)s) = (!s. (Not p)s ==> q s)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [IMP_DISJ_THM; NOT_CLAUSES]);;
let NOT_OR_IMPLY_lemma = prove_thm
("NOT_OR_IMPLY_lemma",
`!(p:'a->bool) q. (!s. ((Not p) \/* q)s) = (!s. p s ==> q s)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [NOT_def1; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [IMP_DISJ_THM; NOT_CLAUSES]);;
let DISJ_CONJ_lemma1 = TAC_PROOF
(([],
`!p q r (s:'a).
(p s \/ q s /\ r s)
==>
((p s \/ q s) /\ (p s \/ r s))`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_CONJ_lemma2 = TAC_PROOF
(([], `!(p:'a->bool) q r s.
((p s \/ q s) /\ (p s \/ r s)) ==> (p s \/ q s /\ r s)`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let DISJ_CONJ_lemma = TAC_PROOF
(([], `!(p:'a->bool) q r s.
(p s \/ q s /\ r s) <=> ((p s \/ q s) /\ (p s \/ r s))`),
REWRITE_TAC [IMP_ANTISYM_RULE
(SPEC_ALL DISJ_CONJ_lemma1)
(SPEC_ALL DISJ_CONJ_lemma2)]);;
let OR_AND_DISTR_lemma = prove_thm
("OR_AND_DISTR_lemma",
`!(p:'a->bool) q r. p \/* (q /\* r) = (p \/* q) /\* (p \/* r)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] DISJ_CONJ_lemma)));;
let CONJ_DISJ_lemma1 = TAC_PROOF
(([], `!(p:'a->bool) q r s.
(p s /\ (q s \/ r s)) ==> (p s /\ q s \/ p s /\ r s)`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let CONJ_DISJ_lemma2 = TAC_PROOF
(([], `!(p:'a->bool) q r s.
(p s /\ q s \/ p s /\ r s) ==> (p s /\ (q s \/ r s))`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC [];
ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let CONJ_DISJ_lemma = TAC_PROOF
(([], `!(p:'a->bool) q r s.
(p s /\ (q s \/ r s)) <=> (p s /\ q s \/ p s /\ r s)`),
REWRITE_TAC [IMP_ANTISYM_RULE
(SPEC_ALL CONJ_DISJ_lemma1)
(SPEC_ALL CONJ_DISJ_lemma2)]);;
let AND_OR_DISTR_lemma = prove_thm
("AND_OR_DISTR_lemma",
`!(p:'a->bool) q r. p /\* (q \/* r) = (p /\* q) \/* (p /\* r)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [p;q;r] CONJ_DISJ_lemma)));;
let NOT_IMPLIES_False_lemma = prove_thm
("NOT_IMPLIES_False_lemma",
`!(p:'a->bool). (!s. (Not p)s) ==> (!s. p s = False s)`,
REWRITE_TAC [FALSE_def; NOT_def1] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC []);;
let NOT_P_IMPLIES_P_EQ_False_lemma = prove_thm
("NOT_P_IMPLIES_P_EQ_False_lemma",
`!(p:'a->bool). (!s. (Not p)s) ==> (p = False)`,
REPEAT STRIP_TAC THEN
ASSUME_TAC (MK_ABS (UNDISCH_ALL (SPEC_ALL NOT_IMPLIES_False_lemma))) THEN
UNDISCH_TAC (`(\s:'a. p s) = (\s. False s)`) THEN
REWRITE_TAC [ETA_AX]);;
let NOT_AND_IMPLIES_lemma = prove_thm
("NOT_AND_IMPLIES_lemma",
`!(p:'a->bool) q. (!s. (Not (p /\* q))s) <=> (!s. p s ==> Not q s)`,
REWRITE_TAC [NOT_def1; AND_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [DE_MORGAN_THM; NOT_CLAUSES; IMP_DISJ_THM]);;
let NOT_AND_IMPLIES_lemma1 = prove_thm
("NOT_AND_IMPLIES_lemma1",
`!(p:'a->bool) q. (!s. (Not (p /\* q))s) ==> (!s. p s ==> Not q s)`,
REWRITE_TAC [NOT_AND_IMPLIES_lemma]);;
let NOT_AND_IMPLIES_lemma2 = prove_thm
("NOT_AND_IMPLIES_lemma2",
`!(p:'a->bool) q. (!s. (Not (p /\* q))s) ==> (!s. q s ==> Not p s)`,
REWRITE_TAC [NOT_AND_IMPLIES_lemma; NOT_def1] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REPEAT STRIP_TAC THEN
RES_TAC);;
let CONJ_DISJ_IMPLY_lemma1 = TAC_PROOF
(([], `!(p:'a->bool) q s. p s /\ (p s \/ q s) ==> p s`),
REPEAT STRIP_TAC);;
let CONJ_DISJ_IMPLY_lemma2 = TAC_PROOF
(([], `!(p:'a->bool) q s. p s ==> p s /\ (p s \/ q s)`),
REPEAT STRIP_TAC THENL
[ASM_REWRITE_TAC []; ASM_REWRITE_TAC []]);;
let CONJ_DISJ_IMPLY_lemma = TAC_PROOF
(([], `!(p:'a->bool) q s. p s /\ (p s \/ q s) <=> p s`),
REWRITE_TAC [IMP_ANTISYM_RULE
(SPEC_ALL CONJ_DISJ_IMPLY_lemma1)
(SPEC_ALL CONJ_DISJ_IMPLY_lemma2)]);;
let CONJ_DISJ_ABS_IMPLY_lemma = TAC_PROOF
(([], `!(p:'a->bool) q. (\s. p s /\ (p s \/ q s)) = p`),
REPEAT GEN_TAC THEN
REWRITE_TAC [CONJ_DISJ_IMPLY_lemma; ETA_AX]);;
let AND_OR_EQ_lemma = prove_thm
("AND_OR_EQ_lemma",
`!(p:'a->bool) q. p /\* (p \/* q) = p`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_def; OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
REWRITE_TAC [CONJ_DISJ_ABS_IMPLY_lemma]);;
let AND_OR_EQ_AND_COMM_OR_lemma = prove_thm
("AND_OR_EQ_AND_COMM_OR_lemma",
`!(p:'a->bool) q. p /\* (q \/* p) = p /\* (p \/* q)`,
REPEAT GEN_TAC THEN
REWRITE_TAC [AND_OR_EQ_lemma] THEN
ONCE_REWRITE_TAC [OR_COMM_lemma] THEN
REWRITE_TAC [AND_OR_EQ_lemma]);;
let IMPLY_WEAK_lemma = prove_thm
("IMPLY_WEAK_lemma",
`!(p:'a->bool) q. (!s. p s) ==> (!s. (p \/* q) s)`,
REPEAT STRIP_TAC THEN
REWRITE_TAC [OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
ASM_REWRITE_TAC []);;
let IMPLY_WEAK_lemma_b = prove_thm
("IMPLY_WEAK_lemma_b",
`!(p:'a->bool) q s. p s ==> (p \/* q) s`,
REPEAT STRIP_TAC THEN
REWRITE_TAC [OR_def] THEN
CONV_TAC (DEPTH_CONV BETA_CONV) THEN
ASM_REWRITE_TAC []);;
let ALL_AND_lemma1 = TAC_PROOF
(([],
`!(P:num->('a->bool)) i s. (!i. P i s) <=> (P i s /\ (!i. P i s))`),
REPEAT STRIP_TAC THEN
EQ_TAC THENL
[
REPEAT STRIP_TAC THENL
[
ASM_REWRITE_TAC []
;
ASM_REWRITE_TAC []
];
REPEAT STRIP_TAC THEN
ASM_REWRITE_TAC []]);;
let ALL_OR_lemma1 = TAC_PROOF
(([],
`!(P:num->('a->bool)) i s. (?i. P i s) <=> (P i s \/ (?i. P i s))`),
REPEAT GEN_TAC THEN
EQ_TAC THENL
[
REPEAT STRIP_TAC THEN
DISJ2_TAC THEN
EXISTS_TAC (`i':num`) THEN
ASM_REWRITE_TAC []
;
REPEAT STRIP_TAC THENL
[
EXISTS_TAC (`i:num`) THEN
ASM_REWRITE_TAC []
;
EXISTS_TAC (`i:num`) THEN
ASM_REWRITE_TAC []
]
]);;
let ALL_OR_lemma = prove_thm
("ALL_OR_lemma",
`!(P:num->('a->bool)) i. (((?*) P) = ((P i) \/* ((?*) P)))`,
GEN_TAC THEN GEN_TAC THEN
REWRITE_TAC [EXISTS_def; OR_def] THEN
BETA_TAC THEN
STRIP_ASSUME_TAC (MK_ABS (SPECL [P;i] ALL_OR_lemma1)));;
let ALL_i_OR_lemma1 = TAC_PROOF
(([],
`!P (s:'a). (?i. \<=/* P i s) = (?i. P i s)`),
REPEAT STRIP_TAC THEN
EQ_TAC THENL
[
STRIP_TAC THEN
UNDISCH_TAC (`\<=/* (P:num->('a->bool)) i s`) THEN
SPEC_TAC (i,i) THEN
INDUCT_TAC THENL
[
REWRITE_TAC [OR_LE_N_def] THEN
DISCH_TAC THEN
EXISTS_TAC (`0`) THEN
ASM_REWRITE_TAC []
;