forked from open-mmlab/mmengine
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_base_module.py
430 lines (376 loc) · 16.1 KB
/
test_base_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import logging
import os.path as osp
import tempfile
from unittest import TestCase
from unittest.mock import patch
import torch
from torch import nn
from torch.nn.init import constant_
from mmengine.logging.logger import MMLogger
from mmengine.model import BaseModule, ModuleDict, ModuleList, Sequential
from mmengine.registry import Registry, build_from_cfg
COMPONENTS = Registry('component')
FOOMODELS = Registry('model')
Logger = MMLogger.get_current_instance()
@COMPONENTS.register_module()
class FooConv1d(BaseModule):
def __init__(self, init_cfg=None):
super().__init__(init_cfg)
self.conv1d = nn.Conv1d(4, 1, 4)
def forward(self, x):
return self.conv1d(x)
@COMPONENTS.register_module()
class FooConv2d(BaseModule):
def __init__(self, init_cfg=None):
super().__init__(init_cfg)
self.conv2d = nn.Conv2d(3, 1, 3)
def forward(self, x):
return self.conv2d(x)
@COMPONENTS.register_module()
class FooLinear(BaseModule):
def __init__(self, init_cfg=None):
super().__init__(init_cfg)
self.linear = nn.Linear(3, 4)
def forward(self, x):
return self.linear(x)
@COMPONENTS.register_module()
class FooLinearConv1d(BaseModule):
def __init__(self, linear=None, conv1d=None, init_cfg=None):
super().__init__(init_cfg)
if linear is not None:
self.linear = build_from_cfg(linear, COMPONENTS)
if conv1d is not None:
self.conv1d = build_from_cfg(conv1d, COMPONENTS)
def forward(self, x):
x = self.linear(x)
return self.conv1d(x)
@FOOMODELS.register_module()
class FooModel(BaseModule):
def __init__(self,
component1=None,
component2=None,
component3=None,
component4=None,
init_cfg=None) -> None:
super().__init__(init_cfg)
if component1 is not None:
self.component1 = build_from_cfg(component1, COMPONENTS)
if component2 is not None:
self.component2 = build_from_cfg(component2, COMPONENTS)
if component3 is not None:
self.component3 = build_from_cfg(component3, COMPONENTS)
if component4 is not None:
self.component4 = build_from_cfg(component4, COMPONENTS)
# its type is not BaseModule, it can be initialized
# with "override" key.
self.reg = nn.Linear(3, 4)
class TestBaseModule(TestCase):
def setUp(self) -> None:
self.temp_dir = tempfile.TemporaryDirectory()
self.BaseModule = BaseModule()
self.model_cfg = dict(
type='FooModel',
init_cfg=[
dict(type='Constant', val=1, bias=2, layer='Linear'),
dict(type='Constant', val=3, bias=4, layer='Conv1d'),
dict(type='Constant', val=5, bias=6, layer='Conv2d')
],
component1=dict(type='FooConv1d'),
component2=dict(type='FooConv2d'),
component3=dict(type='FooLinear'),
component4=dict(
type='FooLinearConv1d',
linear=dict(type='FooLinear'),
conv1d=dict(type='FooConv1d')))
self.model = build_from_cfg(self.model_cfg, FOOMODELS)
self.logger = MMLogger.get_instance(self._testMethodName)
def tearDown(self) -> None:
self.temp_dir.cleanup()
logging.shutdown()
MMLogger._instance_dict.clear()
return super().tearDown()
def test_is_init(self):
assert self.BaseModule.is_init is False
def test_init_weights(self):
"""
Config
model (FooModel, Linear: weight=1, bias=2, Conv1d: weight=3, bias=4,
Conv2d: weight=5, bias=6)
├──component1 (FooConv1d)
├──component2 (FooConv2d)
├──component3 (FooLinear)
├──component4 (FooLinearConv1d)
├──linear (FooLinear)
├──conv1d (FooConv1d)
├──reg (nn.Linear)
Parameters after initialization
model (FooModel)
├──component1 (FooConv1d, weight=3, bias=4)
├──component2 (FooConv2d, weight=5, bias=6)
├──component3 (FooLinear, weight=1, bias=2)
├──component4 (FooLinearConv1d)
├──linear (FooLinear, weight=1, bias=2)
├──conv1d (FooConv1d, weight=3, bias=4)
├──reg (nn.Linear, weight=1, bias=2)
"""
self.model.init_weights()
assert torch.equal(
self.model.component1.conv1d.weight,
torch.full(self.model.component1.conv1d.weight.shape, 3.0))
assert torch.equal(
self.model.component1.conv1d.bias,
torch.full(self.model.component1.conv1d.bias.shape, 4.0))
assert torch.equal(
self.model.component2.conv2d.weight,
torch.full(self.model.component2.conv2d.weight.shape, 5.0))
assert torch.equal(
self.model.component2.conv2d.bias,
torch.full(self.model.component2.conv2d.bias.shape, 6.0))
assert torch.equal(
self.model.component3.linear.weight,
torch.full(self.model.component3.linear.weight.shape, 1.0))
assert torch.equal(
self.model.component3.linear.bias,
torch.full(self.model.component3.linear.bias.shape, 2.0))
assert torch.equal(
self.model.component4.linear.linear.weight,
torch.full(self.model.component4.linear.linear.weight.shape, 1.0))
assert torch.equal(
self.model.component4.linear.linear.bias,
torch.full(self.model.component4.linear.linear.bias.shape, 2.0))
assert torch.equal(
self.model.component4.conv1d.conv1d.weight,
torch.full(self.model.component4.conv1d.conv1d.weight.shape, 3.0))
assert torch.equal(
self.model.component4.conv1d.conv1d.bias,
torch.full(self.model.component4.conv1d.conv1d.bias.shape, 4.0))
assert torch.equal(self.model.reg.weight,
torch.full(self.model.reg.weight.shape, 1.0))
assert torch.equal(self.model.reg.bias,
torch.full(self.model.reg.bias.shape, 2.0))
# Test build model from Pretrained weights
class CustomLinear(BaseModule):
def __init__(self, init_cfg=None):
super().__init__(init_cfg)
self.linear = nn.Linear(1, 1)
def init_weights(self):
constant_(self.linear.weight, 1)
constant_(self.linear.bias, 2)
@FOOMODELS.register_module()
class PratrainedModel(FooModel):
def __init__(self,
component1=None,
component2=None,
component3=None,
component4=None,
init_cfg=None) -> None:
super().__init__(component1, component2, component3,
component4, init_cfg)
self.linear = CustomLinear()
checkpoint_path = osp.join(self.temp_dir.name, 'test.pth')
torch.save(self.model.state_dict(), checkpoint_path)
model_cfg = copy.deepcopy(self.model_cfg)
model_cfg['type'] = 'PratrainedModel'
model_cfg['init_cfg'] = dict(
type='Pretrained', checkpoint=checkpoint_path)
model = FOOMODELS.build(model_cfg)
ori_layer_weight = model.linear.linear.weight.clone()
ori_layer_bias = model.linear.linear.bias.clone()
model.init_weights()
self.assertTrue((ori_layer_weight != model.linear.linear.weight).any())
self.assertTrue((ori_layer_bias != model.linear.linear.bias).any())
class FakeDDP(nn.Module):
def __init__(self, module) -> None:
super().__init__()
self.module = module
# Test initialization of nested modules in DDPModule which define
# `init_weights`.
with patch('mmengine.model.base_module.is_model_wrapper',
lambda x: isinstance(x, FakeDDP)):
model = FOOMODELS.build(model_cfg)
model.ddp = FakeDDP(CustomLinear())
model.init_weights()
self.assertTrue((model.ddp.module.linear.weight == 1).all())
self.assertTrue((model.ddp.module.linear.bias == 2).all())
def test_dump_init_info(self):
import os
import shutil
dump_dir = 'tests/test_model/test_dump_info'
if not (os.path.exists(dump_dir) and os.path.isdir(dump_dir)):
os.makedirs(dump_dir)
for filename in os.listdir(dump_dir):
file_path = os.path.join(dump_dir, filename)
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
MMLogger.get_instance('logger1') # add logger without FileHandler
model1 = build_from_cfg(self.model_cfg, FOOMODELS)
model1.init_weights()
assert len(os.listdir(dump_dir)) == 0
log_path = os.path.join(dump_dir, 'out.log')
MMLogger.get_instance(
'logger2', log_file=log_path) # add logger with FileHandler
model2 = build_from_cfg(self.model_cfg, FOOMODELS)
model2.init_weights()
assert len(os.listdir(dump_dir)) == 1
assert os.stat(log_path).st_size != 0
# `FileHandler` should be closed in Windows, otherwise we cannot
# delete the temporary directory
logging.shutdown()
MMLogger._instance_dict.clear()
shutil.rmtree(dump_dir)
class TestModuleList(TestCase):
def test_modulelist_weight_init(self):
models_cfg = [
dict(
type='FooConv1d',
init_cfg=dict(
type='Constant', layer='Conv1d', val=0., bias=1.)),
dict(
type='FooConv2d',
init_cfg=dict(
type='Constant', layer='Conv2d', val=2., bias=3.)),
]
layers = [build_from_cfg(cfg, COMPONENTS) for cfg in models_cfg]
modellist = ModuleList(layers)
modellist.init_weights()
self.assertTrue(
torch.equal(modellist[0].conv1d.weight,
torch.full(modellist[0].conv1d.weight.shape, 0.)))
self.assertTrue(
torch.equal(modellist[0].conv1d.bias,
torch.full(modellist[0].conv1d.bias.shape, 1.)))
self.assertTrue(
torch.equal(modellist[1].conv2d.weight,
torch.full(modellist[1].conv2d.weight.shape, 2.)))
self.assertTrue(
torch.equal(modellist[1].conv2d.bias,
torch.full(modellist[1].conv2d.bias.shape, 3.)))
# inner init_cfg has higher priority
layers = [build_from_cfg(cfg, COMPONENTS) for cfg in models_cfg]
modellist = ModuleList(
layers,
init_cfg=dict(
type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.))
modellist.init_weights()
self.assertTrue(
torch.equal(modellist[0].conv1d.weight,
torch.full(modellist[0].conv1d.weight.shape, 0.)))
self.assertTrue(
torch.equal(modellist[0].conv1d.bias,
torch.full(modellist[0].conv1d.bias.shape, 1.)))
self.assertTrue(
torch.equal(modellist[1].conv2d.weight,
torch.full(modellist[1].conv2d.weight.shape, 2.)))
self.assertTrue(
torch.equal(modellist[1].conv2d.bias,
torch.full(modellist[1].conv2d.bias.shape, 3.)))
class TestModuleDict(TestCase):
def test_moduledict_weight_init(self):
models_cfg = dict(
foo_conv_1d=dict(
type='FooConv1d',
init_cfg=dict(
type='Constant', layer='Conv1d', val=0., bias=1.)),
foo_conv_2d=dict(
type='FooConv2d',
init_cfg=dict(
type='Constant', layer='Conv2d', val=2., bias=3.)),
)
layers = {
name: build_from_cfg(cfg, COMPONENTS)
for name, cfg in models_cfg.items()
}
modeldict = ModuleDict(layers)
modeldict.init_weights()
self.assertTrue(
torch.equal(
modeldict['foo_conv_1d'].conv1d.weight,
torch.full(modeldict['foo_conv_1d'].conv1d.weight.shape, 0.)))
self.assertTrue(
torch.equal(
modeldict['foo_conv_1d'].conv1d.bias,
torch.full(modeldict['foo_conv_1d'].conv1d.bias.shape, 1.)))
self.assertTrue(
torch.equal(
modeldict['foo_conv_2d'].conv2d.weight,
torch.full(modeldict['foo_conv_2d'].conv2d.weight.shape, 2.)))
self.assertTrue(
torch.equal(
modeldict['foo_conv_2d'].conv2d.bias,
torch.full(modeldict['foo_conv_2d'].conv2d.bias.shape, 3.)))
# inner init_cfg has higher priority
layers = {
name: build_from_cfg(cfg, COMPONENTS)
for name, cfg in models_cfg.items()
}
modeldict = ModuleDict(
layers,
init_cfg=dict(
type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.))
modeldict.init_weights()
self.assertTrue(
torch.equal(
modeldict['foo_conv_1d'].conv1d.weight,
torch.full(modeldict['foo_conv_1d'].conv1d.weight.shape, 0.)))
self.assertTrue(
torch.equal(
modeldict['foo_conv_1d'].conv1d.bias,
torch.full(modeldict['foo_conv_1d'].conv1d.bias.shape, 1.)))
self.assertTrue(
torch.equal(
modeldict['foo_conv_2d'].conv2d.weight,
torch.full(modeldict['foo_conv_2d'].conv2d.weight.shape, 2.)))
self.assertTrue(
torch.equal(
modeldict['foo_conv_2d'].conv2d.bias,
torch.full(modeldict['foo_conv_2d'].conv2d.bias.shape, 3.)))
class TestSequential(TestCase):
def test_sequential_model_weight_init(self):
seq_model_cfg = [
dict(
type='FooConv1d',
init_cfg=dict(
type='Constant', layer='Conv1d', val=0., bias=1.)),
dict(
type='FooConv2d',
init_cfg=dict(
type='Constant', layer='Conv2d', val=2., bias=3.)),
]
layers = [build_from_cfg(cfg, COMPONENTS) for cfg in seq_model_cfg]
seq_model = Sequential(*layers)
seq_model.init_weights()
self.assertTrue(
torch.equal(seq_model[0].conv1d.weight,
torch.full(seq_model[0].conv1d.weight.shape, 0.)))
self.assertTrue(
torch.equal(seq_model[0].conv1d.bias,
torch.full(seq_model[0].conv1d.bias.shape, 1.)))
self.assertTrue(
torch.equal(seq_model[1].conv2d.weight,
torch.full(seq_model[1].conv2d.weight.shape, 2.)))
self.assertTrue(
torch.equal(seq_model[1].conv2d.bias,
torch.full(seq_model[1].conv2d.bias.shape, 3.)))
# inner init_cfg has higher priority
layers = [build_from_cfg(cfg, COMPONENTS) for cfg in seq_model_cfg]
seq_model = Sequential(
*layers,
init_cfg=dict(
type='Constant', layer=['Conv1d', 'Conv2d'], val=4., bias=5.))
seq_model.init_weights()
self.assertTrue(
torch.equal(seq_model[0].conv1d.weight,
torch.full(seq_model[0].conv1d.weight.shape, 0.)))
self.assertTrue(
torch.equal(seq_model[0].conv1d.bias,
torch.full(seq_model[0].conv1d.bias.shape, 1.)))
self.assertTrue(
torch.equal(seq_model[1].conv2d.weight,
torch.full(seq_model[1].conv2d.weight.shape, 2.)))
self.assertTrue(
torch.equal(seq_model[1].conv2d.bias,
torch.full(seq_model[1].conv2d.bias.shape, 3.)))