forked from apache/superset
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataframe_test.py
158 lines (143 loc) · 6.18 KB
/
dataframe_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import numpy as np
import pandas as pd
from superset.dataframe import dedup, SupersetDataFrame
from superset.db_engine_specs import BaseEngineSpec
from superset.db_engine_specs.presto import PrestoEngineSpec
from .base_tests import SupersetTestCase
class SupersetDataFrameTestCase(SupersetTestCase):
def test_dedup(self):
self.assertEquals(dedup(["foo", "bar"]), ["foo", "bar"])
self.assertEquals(
dedup(["foo", "bar", "foo", "bar", "Foo"]),
["foo", "bar", "foo__1", "bar__1", "Foo"],
)
self.assertEquals(
dedup(["foo", "bar", "bar", "bar", "Bar"]),
["foo", "bar", "bar__1", "bar__2", "Bar"],
)
self.assertEquals(
dedup(["foo", "bar", "bar", "bar", "Bar"], case_sensitive=False),
["foo", "bar", "bar__1", "bar__2", "Bar__3"],
)
def test_get_columns_basic(self):
data = [("a1", "b1", "c1"), ("a2", "b2", "c2")]
cursor_descr = (("a", "string"), ("b", "string"), ("c", "string"))
cdf = SupersetDataFrame(data, cursor_descr, BaseEngineSpec)
self.assertEqual(
cdf.columns,
[
{"is_date": False, "type": "STRING", "name": "a", "is_dim": True},
{"is_date": False, "type": "STRING", "name": "b", "is_dim": True},
{"is_date": False, "type": "STRING", "name": "c", "is_dim": True},
],
)
def test_get_columns_with_int(self):
data = [("a1", 1), ("a2", 2)]
cursor_descr = (("a", "string"), ("b", "int"))
cdf = SupersetDataFrame(data, cursor_descr, BaseEngineSpec)
self.assertEqual(
cdf.columns,
[
{"is_date": False, "type": "STRING", "name": "a", "is_dim": True},
{
"is_date": False,
"type": "INT",
"name": "b",
"is_dim": False,
"agg": "sum",
},
],
)
def test_get_columns_type_inference(self):
data = [(1.2, 1), (3.14, 2)]
cursor_descr = (("a", None), ("b", None))
cdf = SupersetDataFrame(data, cursor_descr, BaseEngineSpec)
self.assertEqual(
cdf.columns,
[
{
"is_date": False,
"type": "FLOAT",
"name": "a",
"is_dim": False,
"agg": "sum",
},
{
"is_date": False,
"type": "INT",
"name": "b",
"is_dim": False,
"agg": "sum",
},
],
)
def test_is_date(self):
f = SupersetDataFrame.is_date
self.assertEquals(f(np.dtype("M"), ""), True)
self.assertEquals(f(np.dtype("f"), "DATETIME"), True)
self.assertEquals(f(np.dtype("i"), "TIMESTAMP"), True)
self.assertEquals(f(None, "DATETIME"), True)
self.assertEquals(f(None, "TIMESTAMP"), True)
self.assertEquals(f(None, ""), False)
self.assertEquals(f(np.dtype(np.int32), ""), False)
def test_dedup_with_data(self):
data = [("a", 1), ("a", 2)]
cursor_descr = (("a", "string"), ("a", "string"))
cdf = SupersetDataFrame(data, cursor_descr, BaseEngineSpec)
self.assertListEqual(cdf.column_names, ["a", "a__1"])
def test_int64_with_missing_data(self):
data = [(None,), (1239162456494753670,), (None,), (None,), (None,), (None,)]
cursor_descr = [("user_id", "bigint", None, None, None, None, True)]
# the base engine spec does not provide a dtype based on the cursor
# description, so the column is inferred as float64 because of the
# missing data
cdf = SupersetDataFrame(data, cursor_descr, BaseEngineSpec)
np.testing.assert_array_equal(
cdf.raw_df.values.tolist(),
[[np.nan], [1.2391624564947538e18], [np.nan], [np.nan], [np.nan], [np.nan]],
)
# currently only Presto provides a dtype based on the cursor description
cdf = SupersetDataFrame(data, cursor_descr, PrestoEngineSpec)
np.testing.assert_array_equal(
cdf.raw_df.values.tolist(),
[[np.nan], [1239162456494753670], [np.nan], [np.nan], [np.nan], [np.nan]],
)
def test_pandas_datetime64(self):
data = [(None,)]
cursor_descr = [("ds", "timestamp", None, None, None, None, True)]
cdf = SupersetDataFrame(data, cursor_descr, PrestoEngineSpec)
self.assertEqual(cdf.raw_df.dtypes[0], np.dtype("<M8[ns]"))
def test_no_type_coercion(self):
data = [("a", 1), ("b", 2)]
cursor_descr = [
("one", "varchar", None, None, None, None, True),
("two", "integer", None, None, None, None, True),
]
cdf = SupersetDataFrame(data, cursor_descr, PrestoEngineSpec)
self.assertEqual(cdf.raw_df.dtypes[0], np.dtype("O"))
self.assertEqual(cdf.raw_df.dtypes[1], pd.Int64Dtype())
def test_empty_data(self):
data = []
cursor_descr = [
("one", "varchar", None, None, None, None, True),
("two", "integer", None, None, None, None, True),
]
cdf = SupersetDataFrame(data, cursor_descr, PrestoEngineSpec)
self.assertEqual(cdf.raw_df.dtypes[0], np.dtype("O"))
self.assertEqual(cdf.raw_df.dtypes[1], pd.Int64Dtype())