forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathepochs.py
2975 lines (2619 loc) · 120 KB
/
epochs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
"""Tools for working with epoched data."""
# Authors: Alexandre Gramfort <[email protected]>
# Matti Hamalainen <[email protected]>
# Daniel Strohmeier <[email protected]>
# Denis Engemann <[email protected]>
# Mainak Jas <[email protected]>
#
# License: BSD (3-clause)
from collections import Counter
from copy import deepcopy
import json
import operator
import os.path as op
from distutils.version import LooseVersion
import numpy as np
import scipy
from .io.write import (start_file, start_block, end_file, end_block,
write_int, write_float, write_float_matrix,
write_double_matrix, write_complex_float_matrix,
write_complex_double_matrix, write_id, write_string,
_get_split_size)
from .io.meas_info import read_meas_info, write_meas_info, _merge_info
from .io.open import fiff_open, _get_next_fname
from .io.tree import dir_tree_find
from .io.tag import read_tag, read_tag_info
from .io.constants import FIFF
from .io.fiff.raw import _get_fname_rep
from .io.pick import (pick_types, channel_indices_by_type, channel_type,
pick_channels, pick_info, _pick_data_channels,
_pick_aux_channels, _DATA_CH_TYPES_SPLIT,
_picks_to_idx)
from .io.proj import setup_proj, ProjMixin, _proj_equal
from .io.base import BaseRaw, ToDataFrameMixin, TimeMixin
from .bem import _check_origin
from .evoked import EvokedArray, _check_decim
from .baseline import rescale, _log_rescale
from .channels.channels import (ContainsMixin, UpdateChannelsMixin,
SetChannelsMixin, InterpolationMixin)
from .filter import detrend, FilterMixin
from .event import _read_events_fif, make_fixed_length_events
from .fixes import _get_args, rng_uniform
from .viz import (plot_epochs, plot_epochs_psd, plot_epochs_psd_topomap,
plot_epochs_image, plot_topo_image_epochs, plot_drop_log)
from .utils import (_check_fname, check_fname, logger, verbose,
_time_mask, check_random_state, warn, _pl,
sizeof_fmt, SizeMixin, copy_function_doc_to_method_doc,
_check_pandas_installed, _check_preload, GetEpochsMixin,
_prepare_read_metadata, _prepare_write_metadata,
_check_event_id, _gen_events, _check_option,
_check_combine)
from .utils.docs import fill_doc
def _pack_reject_params(epochs):
reject_params = dict()
for key in ('reject', 'flat', 'reject_tmin', 'reject_tmax'):
val = getattr(epochs, key, None)
if val is not None:
reject_params[key] = val
return reject_params
def _save_split(epochs, fname, part_idx, n_parts, fmt):
"""Split epochs."""
# insert index in filename
path, base = op.split(fname)
idx = base.find('.')
if part_idx > 0:
fname = op.join(path, '%s-%d.%s' % (base[:idx], part_idx,
base[idx + 1:]))
next_fname = None
if part_idx < n_parts - 1:
next_fname = op.join(path, '%s-%d.%s' % (base[:idx], part_idx + 1,
base[idx + 1:]))
next_idx = part_idx + 1
fid = start_file(fname)
info = epochs.info
meas_id = info['meas_id']
start_block(fid, FIFF.FIFFB_MEAS)
write_id(fid, FIFF.FIFF_BLOCK_ID)
if info['meas_id'] is not None:
write_id(fid, FIFF.FIFF_PARENT_BLOCK_ID, info['meas_id'])
# Write measurement info
write_meas_info(fid, info)
# One or more evoked data sets
start_block(fid, FIFF.FIFFB_PROCESSED_DATA)
start_block(fid, FIFF.FIFFB_MNE_EPOCHS)
# write events out after getting data to ensure bad events are dropped
data = epochs.get_data()
_check_option('fmt', fmt, ['single', 'double'])
if np.iscomplexobj(data):
if fmt == 'single':
write_function = write_complex_float_matrix
elif fmt == 'double':
write_function = write_complex_double_matrix
else:
if fmt == 'single':
write_function = write_float_matrix
elif fmt == 'double':
write_function = write_double_matrix
start_block(fid, FIFF.FIFFB_MNE_EVENTS)
write_int(fid, FIFF.FIFF_MNE_EVENT_LIST, epochs.events.T)
mapping_ = ';'.join([k + ':' + str(v) for k, v in
epochs.event_id.items()])
write_string(fid, FIFF.FIFF_DESCRIPTION, mapping_)
end_block(fid, FIFF.FIFFB_MNE_EVENTS)
# Metadata
if epochs.metadata is not None:
start_block(fid, FIFF.FIFFB_MNE_METADATA)
metadata = _prepare_write_metadata(epochs.metadata)
write_string(fid, FIFF.FIFF_DESCRIPTION, metadata)
end_block(fid, FIFF.FIFFB_MNE_METADATA)
# First and last sample
first = int(round(epochs.tmin * info['sfreq'])) # round just to be safe
last = first + len(epochs.times) - 1
write_int(fid, FIFF.FIFF_FIRST_SAMPLE, first)
write_int(fid, FIFF.FIFF_LAST_SAMPLE, last)
# save baseline
if epochs.baseline is not None:
bmin, bmax = epochs.baseline
bmin = epochs.times[0] if bmin is None else bmin
bmax = epochs.times[-1] if bmax is None else bmax
write_float(fid, FIFF.FIFF_MNE_BASELINE_MIN, bmin)
write_float(fid, FIFF.FIFF_MNE_BASELINE_MAX, bmax)
# The epochs itself
decal = np.empty(info['nchan'])
for k in range(info['nchan']):
decal[k] = 1.0 / (info['chs'][k]['cal'] *
info['chs'][k].get('scale', 1.0))
data *= decal[np.newaxis, :, np.newaxis]
write_function(fid, FIFF.FIFF_EPOCH, data)
# undo modifications to data
data /= decal[np.newaxis, :, np.newaxis]
write_string(fid, FIFF.FIFF_MNE_EPOCHS_DROP_LOG,
json.dumps(epochs.drop_log))
reject_params = _pack_reject_params(epochs)
if reject_params:
write_string(fid, FIFF.FIFF_MNE_EPOCHS_REJECT_FLAT,
json.dumps(reject_params))
write_int(fid, FIFF.FIFF_MNE_EPOCHS_SELECTION,
epochs.selection)
# And now write the next file info in case epochs are split on disk
if next_fname is not None and n_parts > 1:
start_block(fid, FIFF.FIFFB_REF)
write_int(fid, FIFF.FIFF_REF_ROLE, FIFF.FIFFV_ROLE_NEXT_FILE)
write_string(fid, FIFF.FIFF_REF_FILE_NAME, op.basename(next_fname))
if meas_id is not None:
write_id(fid, FIFF.FIFF_REF_FILE_ID, meas_id)
write_int(fid, FIFF.FIFF_REF_FILE_NUM, next_idx)
end_block(fid, FIFF.FIFFB_REF)
end_block(fid, FIFF.FIFFB_MNE_EPOCHS)
end_block(fid, FIFF.FIFFB_PROCESSED_DATA)
end_block(fid, FIFF.FIFFB_MEAS)
end_file(fid)
@fill_doc
class BaseEpochs(ProjMixin, ContainsMixin, UpdateChannelsMixin,
SetChannelsMixin, InterpolationMixin, FilterMixin,
ToDataFrameMixin, TimeMixin, SizeMixin, GetEpochsMixin):
"""Abstract base class for Epochs-type classes.
This class provides basic functionality and should never be instantiated
directly. See Epochs below for an explanation of the parameters.
Parameters
----------
info : dict
A copy of the info dict from the raw object.
data : ndarray | None
If ``None``, data will be read from the Raw object. If ndarray, must be
of shape (n_epochs, n_channels, n_times).
events : array of int, shape (n_events, 3)
See `Epochs` docstring.
event_id : int | list of int | dict | None
See `Epochs` docstring.
tmin : float
See `Epochs` docstring.
tmax : float
See `Epochs` docstring.
baseline : None or tuple of length 2 (default (None, 0))
See `Epochs` docstring.
raw : Raw object
An instance of Raw.
%(picks_header)s
See `Epochs` docstring.
reject : dict | None
See `Epochs` docstring.
flat : dict | None
See `Epochs` docstring.
decim : int
See `Epochs` docstring.
reject_tmin : scalar | None
See `Epochs` docstring.
reject_tmax : scalar | None
See `Epochs` docstring.
detrend : int | None
See `Epochs` docstring.
proj : bool | 'delayed'
See `Epochs` docstring.
on_missing : str
See `Epochs` docstring.
preload_at_end : bool
Load all epochs from disk when creating the object
or wait before accessing each epoch (more memory
efficient but can be slower).
selection : iterable | None
Iterable of indices of selected epochs. If ``None``, will be
automatically generated, corresponding to all non-zero events.
drop_log : list | None
List of lists of strings indicating which epochs have been marked to be
ignored.
filename : str | None
The filename (if the epochs are read from disk).
metadata : instance of pandas.DataFrame | None
See :class:`mne.Epochs` docstring.
.. versionadded:: 0.16
%(verbose)s
Notes
-----
The ``BaseEpochs`` class is public to allow for stable type-checking in
user code (i.e., ``isinstance(my_epochs, BaseEpochs)``) but should not be
used as a constructor for Epochs objects (use instead :class:`mne.Epochs`).
"""
@verbose
def __init__(self, info, data, events, event_id=None, tmin=-0.2, tmax=0.5,
baseline=(None, 0), raw=None, picks=None, reject=None,
flat=None, decim=1, reject_tmin=None, reject_tmax=None,
detrend=None, proj=True, on_missing='error',
preload_at_end=False, selection=None, drop_log=None,
filename=None, metadata=None, verbose=None): # noqa: D102
self.verbose = verbose
_check_option('on_missing', on_missing, ['error', 'warning', 'ignore'])
if events is not None: # RtEpochs can have events=None
events = np.asarray(events)
event_id = _check_event_id(event_id, events)
self.event_id = event_id
del event_id
if events is not None: # RtEpochs can have events=None
if events.dtype.kind not in ['i', 'u']:
raise ValueError('events must be an array of type int, got '
'type %s' % (events.dtype))
events = events.astype(int)
if events.ndim != 2 or events.shape[1] != 3:
raise ValueError('events must be of shape (N, 3), got %s'
% (events.shape,))
for key, val in self.event_id.items():
if val not in events[:, 2]:
msg = ('No matching events found for %s '
'(event id %i)' % (key, val))
if on_missing == 'error':
raise ValueError(msg)
elif on_missing == 'warning':
warn(msg)
else: # on_missing == 'ignore':
pass
values = list(self.event_id.values())
selected = np.where(np.in1d(events[:, 2], values))[0]
if selection is None:
selection = selected
else:
selection = np.array(selection, int)
if selection.shape != (len(selected),):
raise ValueError('selection must be shape %s got shape %s'
% (selected.shape, selection.shape))
self.selection = selection
if drop_log is None:
self.drop_log = [list() if k in self.selection else ['IGNORED']
for k in range(max(len(events),
max(self.selection) + 1))]
else:
self.drop_log = drop_log
events = events[selected]
if len(np.unique(events[:, 0])) != len(events):
raise RuntimeError('Event time samples were not unique')
n_events = len(events)
if n_events > 1:
if np.diff(events.astype(np.int64)[:, 0]).min() <= 0:
warn('The events passed to the Epochs constructor are not '
'chronologically ordered.', RuntimeWarning)
if n_events > 0:
logger.info('%d matching events found' % n_events)
else:
raise ValueError('No desired events found.')
self.events = events
del events
else:
self.drop_log = list()
self.selection = np.array([], int)
# do not set self.events here, let subclass do it
# check reject_tmin and reject_tmax
if (reject_tmin is not None) and (reject_tmin < tmin):
raise ValueError("reject_tmin needs to be None or >= tmin")
if (reject_tmax is not None) and (reject_tmax > tmax):
raise ValueError("reject_tmax needs to be None or <= tmax")
if (reject_tmin is not None) and (reject_tmax is not None):
if reject_tmin >= reject_tmax:
raise ValueError('reject_tmin needs to be < reject_tmax')
if (detrend not in [None, 0, 1]) or isinstance(detrend, bool):
raise ValueError('detrend must be None, 0, or 1')
# check that baseline is in available data
if tmin > tmax:
raise ValueError('tmin has to be less than or equal to tmax')
_check_baseline(baseline, tmin, tmax, info['sfreq'])
logger.info(_log_rescale(baseline))
self.baseline = baseline
self.reject_tmin = reject_tmin
self.reject_tmax = reject_tmax
self.detrend = detrend
self._raw = raw
info._check_consistency()
self.picks = _picks_to_idx(info, picks, none='all', exclude=(),
allow_empty=False)
self.info = pick_info(info, self.picks)
del info
self.metadata = metadata
self._current = 0
if data is None:
self.preload = False
self._data = None
else:
assert decim == 1
if data.ndim != 3 or data.shape[2] != \
round((tmax - tmin) * self.info['sfreq']) + 1:
raise RuntimeError('bad data shape')
self.preload = True
self._data = data
self._offset = None
# Handle times
sfreq = float(self.info['sfreq'])
start_idx = int(round(tmin * sfreq))
self._raw_times = np.arange(start_idx,
int(round(tmax * sfreq)) + 1) / sfreq
self._set_times(self._raw_times)
self._decim = 1
self.decimate(decim)
# setup epoch rejection
self.reject = None
self.flat = None
self._reject_setup(reject, flat)
# do the rest
valid_proj = [True, 'delayed', False]
if proj not in valid_proj:
raise ValueError('"proj" must be one of %s, not %s'
% (valid_proj, proj))
if proj == 'delayed':
self._do_delayed_proj = True
logger.info('Entering delayed SSP mode.')
else:
self._do_delayed_proj = False
activate = False if self._do_delayed_proj else proj
self._projector, self.info = setup_proj(self.info, False,
activate=activate)
if preload_at_end:
assert self._data is None
assert self.preload is False
self.load_data() # this will do the projection
elif proj is True and self._projector is not None and data is not None:
# let's make sure we project if data was provided and proj
# requested
# we could do this with np.einsum, but iteration should be
# more memory safe in most instances
for ii, epoch in enumerate(self._data):
self._data[ii] = np.dot(self._projector, epoch)
self._filename = str(filename) if filename is not None else filename
self._check_consistency()
def _check_consistency(self):
"""Check invariants of epochs object."""
assert len(self.selection) == len(self.events)
assert len(self.selection) == sum(
(len(dl) == 0 for dl in self.drop_log))
assert len(self.drop_log) >= len(self.events)
assert hasattr(self, '_times_readonly')
assert not self.times.flags['WRITEABLE']
def load_data(self):
"""Load the data if not already preloaded.
Returns
-------
epochs : instance of Epochs
The epochs object.
Notes
-----
This function operates in-place.
.. versionadded:: 0.10.0
"""
if self.preload:
return self
self._data = self._get_data()
self.preload = True
self._decim_slice = slice(None, None, None)
self._decim = 1
self._raw_times = self.times
assert self._data.shape[-1] == len(self.times)
self._raw = None # shouldn't need it anymore
return self
@verbose
def decimate(self, decim, offset=0, verbose=None):
"""Decimate the epochs.
.. note:: No filtering is performed. To avoid aliasing, ensure
your data are properly lowpassed.
Parameters
----------
decim : int
The amount to decimate data.
offset : int
Apply an offset to where the decimation starts relative to the
sample corresponding to t=0. The offset is in samples at the
current sampling rate.
.. versionadded:: 0.12
%(verbose_meth)s
Returns
-------
epochs : instance of Epochs
The decimated Epochs object.
See Also
--------
mne.Evoked.decimate
mne.Epochs.resample
mne.io.Raw.resample
Notes
-----
Decimation can be done multiple times. For example,
``epochs.decimate(2).decimate(2)`` will be the same as
``epochs.decimate(4)``.
If `decim` is 1, this method does not copy the underlying data.
.. versionadded:: 0.10.0
"""
decim, offset, new_sfreq = _check_decim(self.info, decim, offset)
start_idx = int(round(-self._raw_times[0] * (self.info['sfreq'] *
self._decim)))
self._decim *= decim
i_start = start_idx % self._decim + offset
decim_slice = slice(i_start, None, self._decim)
self.info['sfreq'] = new_sfreq
if self.preload:
if decim != 1:
self._data = self._data[:, :, decim_slice].copy()
self._raw_times = self._raw_times[decim_slice].copy()
else:
self._data = np.ascontiguousarray(self._data)
self._decim_slice = slice(None)
self._decim = 1
else:
self._decim_slice = decim_slice
self._set_times(self._raw_times[self._decim_slice])
return self
@verbose
def apply_baseline(self, baseline=(None, 0), verbose=None):
"""Baseline correct epochs.
Parameters
----------
baseline : tuple of length 2
The time interval to apply baseline correction. If None do not
apply it. If baseline is (a, b) the interval is between "a (s)" and
"b (s)". If a is None the beginning of the data is used and if b is
None then b is set to the end of the interval. If baseline is equal
to (None, None) all the time interval is used. Correction is
applied by computing mean of the baseline period and subtracting it
from the data. The baseline (a, b) includes both endpoints, i.e.
all timepoints t such that a <= t <= b.
%(verbose_meth)s
Returns
-------
epochs : instance of Epochs
The baseline-corrected Epochs object.
Notes
-----
Baseline correction can be done multiple times.
.. versionadded:: 0.10.0
"""
_check_baseline(baseline, self.tmin, self.tmax, self.info['sfreq'])
if self.preload:
picks = _pick_data_channels(self.info, exclude=[],
with_ref_meg=True)
picks_aux = _pick_aux_channels(self.info, exclude=[])
picks = np.sort(np.concatenate((picks, picks_aux)))
rescale(self._data, self.times, baseline, copy=False, picks=picks)
else: # logging happens in "rescale" in "if" branch
logger.info(_log_rescale(baseline))
self.baseline = baseline
return self
def _reject_setup(self, reject, flat):
"""Set self._reject_time and self._channel_type_idx."""
idx = channel_indices_by_type(self.info)
reject = deepcopy(reject) if reject is not None else dict()
flat = deepcopy(flat) if flat is not None else dict()
for rej, kind in zip((reject, flat), ('reject', 'flat')):
if not isinstance(rej, dict):
raise TypeError('reject and flat must be dict or None, not %s'
% type(rej))
bads = set(rej.keys()) - set(idx.keys())
if len(bads) > 0:
raise KeyError('Unknown channel types found in %s: %s'
% (kind, bads))
for key in idx.keys():
# don't throw an error if rejection/flat would do nothing
if len(idx[key]) == 0 and (np.isfinite(reject.get(key, np.inf)) or
flat.get(key, -1) >= 0):
# This is where we could eventually add e.g.
# self.allow_missing_reject_keys check to allow users to
# provide keys that don't exist in data
raise ValueError("No %s channel found. Cannot reject based on "
"%s." % (key.upper(), key.upper()))
# check for invalid values
for rej, kind in zip((reject, flat), ('Rejection', 'Flat')):
for key, val in rej.items():
if val is None or val < 0:
raise ValueError('%s value must be a number >= 0, not "%s"'
% (kind, val))
# now check to see if our rejection and flat are getting more
# restrictive
old_reject = self.reject if self.reject is not None else dict()
old_flat = self.flat if self.flat is not None else dict()
bad_msg = ('{kind}["{key}"] == {new} {op} {old} (old value), new '
'{kind} values must be at least as stringent as '
'previous ones')
for key in set(reject.keys()).union(old_reject.keys()):
old = old_reject.get(key, np.inf)
new = reject.get(key, np.inf)
if new > old:
raise ValueError(bad_msg.format(kind='reject', key=key,
new=new, old=old, op='>'))
for key in set(flat.keys()).union(old_flat.keys()):
old = old_flat.get(key, -np.inf)
new = flat.get(key, -np.inf)
if new < old:
raise ValueError(bad_msg.format(kind='flat', key=key,
new=new, old=old, op='<'))
# after validation, set parameters
self._bad_dropped = False
self._channel_type_idx = idx
self.reject = reject if len(reject) > 0 else None
self.flat = flat if len(flat) > 0 else None
if (self.reject_tmin is None) and (self.reject_tmax is None):
self._reject_time = None
else:
if self.reject_tmin is None:
reject_imin = None
else:
idxs = np.nonzero(self.times >= self.reject_tmin)[0]
reject_imin = idxs[0]
if self.reject_tmax is None:
reject_imax = None
else:
idxs = np.nonzero(self.times <= self.reject_tmax)[0]
reject_imax = idxs[-1]
self._reject_time = slice(reject_imin, reject_imax)
@verbose
def _is_good_epoch(self, data, verbose=None):
"""Determine if epoch is good."""
if isinstance(data, str):
return False, [data]
if data is None:
return False, ['NO_DATA']
n_times = len(self.times)
if data.shape[1] < n_times:
# epoch is too short ie at the end of the data
return False, ['TOO_SHORT']
if self.reject is None and self.flat is None:
return True, None
else:
if self._reject_time is not None:
data = data[:, self._reject_time]
return _is_good(data, self.ch_names, self._channel_type_idx,
self.reject, self.flat, full_report=True,
ignore_chs=self.info['bads'])
@verbose
def _detrend_offset_decim(self, epoch, verbose=None):
"""Aux Function: detrend, baseline correct, offset, decim.
Note: operates inplace
"""
if (epoch is None) or isinstance(epoch, str):
return epoch
# Detrend
if self.detrend is not None:
picks = _pick_data_channels(self.info, exclude=[])
epoch[picks] = detrend(epoch[picks], self.detrend, axis=1)
# Baseline correct
picks = pick_types(self.info, meg=True, eeg=True, stim=False,
ref_meg=True, eog=True, ecg=True, seeg=True,
emg=True, bio=True, ecog=True, fnirs=True,
exclude=[])
epoch[picks] = rescale(epoch[picks], self._raw_times, self.baseline,
copy=False, verbose=False)
# handle offset
if self._offset is not None:
epoch += self._offset
# Decimate if necessary (i.e., epoch not preloaded)
epoch = epoch[:, self._decim_slice]
return epoch
def iter_evoked(self):
"""Iterate over epochs as a sequence of Evoked objects.
The Evoked objects yielded will each contain a single epoch (i.e., no
averaging is performed).
This method resets the object iteration state to the first epoch.
"""
self._current = 0
while True:
try:
out = self.__next__(True)
except StopIteration:
break
data, event_id = out
tmin = self.times[0]
info = deepcopy(self.info)
yield EvokedArray(data, info, tmin, comment=str(event_id))
def subtract_evoked(self, evoked=None):
"""Subtract an evoked response from each epoch.
Can be used to exclude the evoked response when analyzing induced
activity, see e.g. [1].
References
----------
[1] David et al. "Mechanisms of evoked and induced responses in
MEG/EEG", NeuroImage, vol. 31, no. 4, pp. 1580-1591, July 2006.
Parameters
----------
evoked : instance of Evoked | None
The evoked response to subtract. If None, the evoked response
is computed from Epochs itself.
Returns
-------
self : instance of Epochs
The modified instance (instance is also modified inplace).
"""
logger.info('Subtracting Evoked from Epochs')
if evoked is None:
picks = _pick_data_channels(self.info, exclude=[])
evoked = self.average(picks)
# find the indices of the channels to use
picks = pick_channels(evoked.ch_names, include=self.ch_names)
# make sure the omitted channels are not data channels
if len(picks) < len(self.ch_names):
sel_ch = [evoked.ch_names[ii] for ii in picks]
diff_ch = list(set(self.ch_names).difference(sel_ch))
diff_idx = [self.ch_names.index(ch) for ch in diff_ch]
diff_types = [channel_type(self.info, idx) for idx in diff_idx]
bad_idx = [diff_types.index(t) for t in diff_types if t in
_DATA_CH_TYPES_SPLIT]
if len(bad_idx) > 0:
bad_str = ', '.join([diff_ch[ii] for ii in bad_idx])
raise ValueError('The following data channels are missing '
'in the evoked response: %s' % bad_str)
logger.info(' The following channels are not included in the '
'subtraction: %s' % ', '.join(diff_ch))
# make sure the times match
if (len(self.times) != len(evoked.times) or
np.max(np.abs(self.times - evoked.times)) >= 1e-7):
raise ValueError('Epochs and Evoked object do not contain '
'the same time points.')
# handle SSPs
if not self.proj and evoked.proj:
warn('Evoked has SSP applied while Epochs has not.')
if self.proj and not evoked.proj:
evoked = evoked.copy().apply_proj()
# find the indices of the channels to use in Epochs
ep_picks = [self.ch_names.index(evoked.ch_names[ii]) for ii in picks]
# do the subtraction
if self.preload:
self._data[:, ep_picks, :] -= evoked.data[picks][None, :, :]
else:
if self._offset is None:
self._offset = np.zeros((len(self.ch_names), len(self.times)),
dtype=np.float)
self._offset[ep_picks] -= evoked.data[picks]
logger.info('[done]')
return self
@fill_doc
def average(self, picks=None, method="mean"):
"""Compute an average over epochs.
Parameters
----------
%(picks_all_data)s
method : str | callable
How to combine the data. If "mean"/"median", the mean/median
are returned.
Otherwise, must be a callable which, when passed an array of shape
(n_epochs, n_channels, n_time) returns an array of shape
(n_channels, n_time).
Note that due to file type limitations, the kind for all
these will be "average".
Returns
-------
evoked : instance of Evoked | dict of Evoked
The averaged epochs.
Notes
-----
Computes an average of all epochs in the instance, even if
they correspond to different conditions. To average by condition,
do ``epochs[condition].average()`` for each condition separately.
When picks is None and epochs contain only ICA channels, no channels
are selected, resulting in an error. This is because ICA channels
are not considered data channels (they are of misc type) and only data
channels are selected when picks is None.
The `method` parameter allows e.g. robust averaging.
For example, one could do:
>>> from scipy.stats import trim_mean # doctest:+SKIP
>>> trim = lambda x: trim_mean(x, 0.1, axis=0) # doctest:+SKIP
>>> epochs.average(method=trim) # doctest:+SKIP
This would compute the trimmed mean.
"""
return self._compute_aggregate(picks=picks, mode=method)
@fill_doc
def standard_error(self, picks=None):
"""Compute standard error over epochs.
Parameters
----------
%(picks_all_data)s
Returns
-------
evoked : instance of Evoked
The standard error over epochs.
"""
return self._compute_aggregate(picks, "std")
def _compute_aggregate(self, picks, mode='mean'):
"""Compute the mean or std over epochs and return Evoked."""
# if instance contains ICA channels they won't be included unless picks
# is specified
if picks is None:
check_ICA = [x.startswith('ICA') for x in self.ch_names]
if np.all(check_ICA):
raise TypeError('picks must be specified (i.e. not None) for '
'ICA channel data')
elif np.any(check_ICA):
warn('ICA channels will not be included unless explicitly '
'selected in picks')
n_channels = len(self.ch_names)
n_times = len(self.times)
if self.preload:
n_events = len(self.events)
fun = _check_combine(mode, valid=('mean', 'median', 'std'))
data = fun(self._data)
assert len(self.events) == len(self._data)
if data.shape != self._data.shape[1:]:
raise RuntimeError(
'You passed a function that resulted n data of shape {}, '
'but it should be {}.'.format(
data.shape, self._data.shape[1:]))
else:
if mode not in {"mean", "std"}:
raise ValueError("If data are not preloaded, can only compute "
"mean or standard deviation.")
data = np.zeros((n_channels, n_times))
n_events = 0
for e in self:
if np.iscomplexobj(e):
data = data.astype(np.complex128)
data += e
n_events += 1
if n_events > 0:
data /= n_events
else:
data.fill(np.nan)
# convert to stderr if requested, could do in one pass but do in
# two (slower) in case there are large numbers
if mode == "std":
data_mean = data.copy()
data.fill(0.)
for e in self:
data += (e - data_mean) ** 2
data = np.sqrt(data / n_events)
if mode == "std":
kind = 'standard_error'
data /= np.sqrt(n_events)
else:
kind = "average"
return self._evoked_from_epoch_data(data, self.info, picks, n_events,
kind, self._name)
@property
def _name(self):
"""Give a nice string representation based on event ids."""
if len(self.event_id) == 1:
comment = next(iter(self.event_id.keys()))
else:
count = Counter(self.events[:, 2])
comments = list()
for key, value in self.event_id.items():
comments.append('%.2f * %s' % (
float(count[value]) / len(self.events), key))
comment = ' + '.join(comments)
return comment
def _evoked_from_epoch_data(self, data, info, picks, n_events, kind,
comment):
"""Create an evoked object from epoch data."""
info = deepcopy(info)
evoked = EvokedArray(data, info, tmin=self.times[0], comment=comment,
nave=n_events, kind=kind, verbose=self.verbose)
# XXX: above constructor doesn't recreate the times object precisely
evoked.times = self.times.copy()
# pick channels
picks = _picks_to_idx(self.info, picks, 'data_or_ica', ())
ch_names = [evoked.ch_names[p] for p in picks]
evoked.pick_channels(ch_names)
if len(evoked.info['ch_names']) == 0:
raise ValueError('No data channel found when averaging.')
if evoked.nave < 1:
warn('evoked object is empty (based on less than 1 epoch)')
return evoked
@property
def ch_names(self):
"""Channel names."""
return self.info['ch_names']
@copy_function_doc_to_method_doc(plot_epochs)
def plot(self, picks=None, scalings=None, n_epochs=20, n_channels=20,
title=None, events=None, event_colors=None, order=None,
show=True, block=False, decim='auto', noise_cov=None,
butterfly=False):
return plot_epochs(self, picks=picks, scalings=scalings,
n_epochs=n_epochs, n_channels=n_channels,
title=title, events=events,
event_colors=event_colors, order=order,
show=show, block=block, decim=decim,
noise_cov=noise_cov, butterfly=butterfly)
@copy_function_doc_to_method_doc(plot_epochs_psd)
def plot_psd(self, fmin=0, fmax=np.inf, tmin=None, tmax=None,
proj=False, bandwidth=None, adaptive=False, low_bias=True,
normalization='length', picks=None, ax=None, color='black',
xscale='linear', area_mode='std', area_alpha=0.33,
dB=True, estimate='auto', show=True, n_jobs=1,
average=None, line_alpha=None, spatial_colors=None,
verbose=None):
return plot_epochs_psd(self, fmin=fmin, fmax=fmax, tmin=tmin,
tmax=tmax, proj=proj, bandwidth=bandwidth,
adaptive=adaptive, low_bias=low_bias,
normalization=normalization, picks=picks, ax=ax,
color=color, xscale=xscale, area_mode=area_mode,
area_alpha=area_alpha, dB=dB, estimate=estimate,
show=show, n_jobs=n_jobs, average=average,
line_alpha=line_alpha,
spatial_colors=spatial_colors, verbose=verbose)
@copy_function_doc_to_method_doc(plot_epochs_psd_topomap)
def plot_psd_topomap(self, bands=None, vmin=None, vmax=None, tmin=None,
tmax=None, proj=False, bandwidth=None, adaptive=False,
low_bias=True, normalization='length', ch_type=None,
layout=None, cmap='RdBu_r', agg_fun=None, dB=True,
n_jobs=1, normalize=False, cbar_fmt='%0.3f',
outlines='head', axes=None, show=True, verbose=None):
return plot_epochs_psd_topomap(
self, bands=bands, vmin=vmin, vmax=vmax, tmin=tmin, tmax=tmax,
proj=proj, bandwidth=bandwidth, adaptive=adaptive,
low_bias=low_bias, normalization=normalization, ch_type=ch_type,
layout=layout, cmap=cmap, agg_fun=agg_fun, dB=dB, n_jobs=n_jobs,
normalize=normalize, cbar_fmt=cbar_fmt, outlines=outlines,
axes=axes, show=show, verbose=verbose)
@copy_function_doc_to_method_doc(plot_topo_image_epochs)
def plot_topo_image(self, layout=None, sigma=0., vmin=None, vmax=None,
colorbar=None, order=None, cmap='RdBu_r',
layout_scale=.95, title=None, scalings=None,
border='none', fig_facecolor='k', fig_background=None,
font_color='w', show=True):
return plot_topo_image_epochs(
self, layout=layout, sigma=sigma, vmin=vmin, vmax=vmax,
colorbar=colorbar, order=order, cmap=cmap,
layout_scale=layout_scale, title=title, scalings=scalings,
border=border, fig_facecolor=fig_facecolor,
fig_background=fig_background, font_color=font_color, show=show)
@verbose
def drop_bad(self, reject='existing', flat='existing', verbose=None):
"""Drop bad epochs without retaining the epochs data.
Should be used before slicing operations.
.. warning:: This operation is slow since all epochs have to be read
from disk. To avoid reading epochs from disk multiple
times, use :meth:`mne.Epochs.load_data()`.
Parameters
----------
reject : dict | str | None
Rejection parameters based on peak-to-peak amplitude.
Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg'.
If reject is None then no rejection is done. If 'existing',
then the rejection parameters set at instantiation are used.
flat : dict | str | None
Rejection parameters based on flatness of signal.
Valid keys are 'grad' | 'mag' | 'eeg' | 'eog' | 'ecg', and values