forked from zephyrproject-rtos/zephyr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
can_stm32.c
1231 lines (1010 loc) · 32 KB
/
can_stm32.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* Copyright (c) 2018 Alexander Wachter
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <drivers/clock_control/stm32_clock_control.h>
#include <drivers/clock_control.h>
#include <pinmux/stm32/pinmux_stm32.h>
#include <sys/util.h>
#include <string.h>
#include <kernel.h>
#include <soc.h>
#include <errno.h>
#include <stdbool.h>
#include <drivers/can.h>
#include "can_stm32.h"
#include <logging/log.h>
LOG_MODULE_DECLARE(can_driver, CONFIG_CAN_LOG_LEVEL);
#define CAN_INIT_TIMEOUT (10 * sys_clock_hw_cycles_per_sec() / MSEC_PER_SEC)
#if DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(can1), st_stm32_can, okay) && \
DT_NODE_HAS_COMPAT_STATUS(DT_NODELABEL(can2), st_stm32_can, okay)
#error Simultaneous use of CAN_1 and CAN_2 not supported yet
#endif
/*
* Translation tables
* filter_in_bank[enum can_filter_type] = number of filters in bank for this type
* reg_demand[enum can_filter_type] = how many registers are used for this type
*/
static const uint8_t filter_in_bank[] = {2, 4, 1, 2};
static const uint8_t reg_demand[] = {2, 1, 4, 2};
static void can_stm32_signal_tx_complete(struct can_mailbox *mb)
{
if (mb->tx_callback) {
mb->tx_callback(mb->error_flags, mb->callback_arg);
} else {
k_sem_give(&mb->tx_int_sem);
}
}
static void can_stm32_get_msg_fifo(CAN_FIFOMailBox_TypeDef *mbox,
struct zcan_frame *msg)
{
if (mbox->RIR & CAN_RI0R_IDE) {
msg->ext_id = mbox->RIR >> CAN_RI0R_EXID_Pos;
msg->id_type = CAN_EXTENDED_IDENTIFIER;
} else {
msg->std_id = mbox->RIR >> CAN_RI0R_STID_Pos;
msg->id_type = CAN_STANDARD_IDENTIFIER;
}
msg->rtr = mbox->RIR & CAN_RI0R_RTR ? CAN_REMOTEREQUEST : CAN_DATAFRAME;
msg->dlc = mbox->RDTR & (CAN_RDT0R_DLC >> CAN_RDT0R_DLC_Pos);
msg->data_32[0] = mbox->RDLR;
msg->data_32[1] = mbox->RDHR;
#ifdef CONFIG_CAN_RX_TIMESTAMP
msg->timestamp = ((mbox->RDTR & CAN_RDT0R_TIME) >> CAN_RDT0R_TIME_Pos);
#endif
}
static inline
void can_stm32_rx_isr_handler(CAN_TypeDef *can, struct can_stm32_data *data)
{
CAN_FIFOMailBox_TypeDef *mbox;
int filter_match_index;
struct zcan_frame msg;
can_rx_callback_t callback;
while (can->RF0R & CAN_RF0R_FMP0) {
mbox = &can->sFIFOMailBox[0];
filter_match_index = ((mbox->RDTR & CAN_RDT0R_FMI)
>> CAN_RDT0R_FMI_Pos);
if (filter_match_index >= CONFIG_CAN_MAX_FILTER) {
break;
}
LOG_DBG("Message on filter index %d", filter_match_index);
can_stm32_get_msg_fifo(mbox, &msg);
callback = data->rx_cb[filter_match_index];
if (callback) {
callback(&msg, data->cb_arg[filter_match_index]);
}
/* Release message */
can->RF0R |= CAN_RF0R_RFOM0;
}
if (can->RF0R & CAN_RF0R_FOVR0) {
LOG_ERR("RX FIFO Overflow");
}
}
static inline void can_stm32_bus_state_change_isr(CAN_TypeDef *can,
struct can_stm32_data *data)
{
struct can_bus_err_cnt err_cnt;
enum can_state state;
if (!(can->ESR & CAN_ESR_EPVF) && !(can->ESR & CAN_ESR_BOFF)) {
return;
}
err_cnt.tx_err_cnt = ((can->ESR & CAN_ESR_TEC) >> CAN_ESR_TEC_Pos);
err_cnt.rx_err_cnt = ((can->ESR & CAN_ESR_REC) >> CAN_ESR_REC_Pos);
if (can->ESR & CAN_ESR_BOFF) {
state = CAN_BUS_OFF;
} else if (can->ESR & CAN_ESR_EPVF) {
state = CAN_ERROR_PASSIVE;
} else {
state = CAN_ERROR_ACTIVE;
}
if (data->state_change_isr) {
data->state_change_isr(state, err_cnt);
}
}
static inline
void can_stm32_tx_isr_handler(CAN_TypeDef *can, struct can_stm32_data *data)
{
uint32_t bus_off;
bus_off = can->ESR & CAN_ESR_BOFF;
if ((can->TSR & CAN_TSR_RQCP0) | bus_off) {
data->mb0.error_flags =
can->TSR & CAN_TSR_TXOK0 ? CAN_TX_OK :
can->TSR & CAN_TSR_TERR0 ? CAN_TX_ERR :
can->TSR & CAN_TSR_ALST0 ? CAN_TX_ARB_LOST :
bus_off ? CAN_TX_BUS_OFF :
CAN_TX_UNKNOWN;
/* clear the request. */
can->TSR |= CAN_TSR_RQCP0;
can_stm32_signal_tx_complete(&data->mb0);
}
if ((can->TSR & CAN_TSR_RQCP1) | bus_off) {
data->mb1.error_flags =
can->TSR & CAN_TSR_TXOK1 ? CAN_TX_OK :
can->TSR & CAN_TSR_TERR1 ? CAN_TX_ERR :
can->TSR & CAN_TSR_ALST1 ? CAN_TX_ARB_LOST :
bus_off ? CAN_TX_BUS_OFF :
CAN_TX_UNKNOWN;
/* clear the request. */
can->TSR |= CAN_TSR_RQCP1;
can_stm32_signal_tx_complete(&data->mb1);
}
if ((can->TSR & CAN_TSR_RQCP2) | bus_off) {
data->mb2.error_flags =
can->TSR & CAN_TSR_TXOK2 ? CAN_TX_OK :
can->TSR & CAN_TSR_TERR2 ? CAN_TX_ERR :
can->TSR & CAN_TSR_ALST2 ? CAN_TX_ARB_LOST :
bus_off ? CAN_TX_BUS_OFF :
CAN_TX_UNKNOWN;
/* clear the request. */
can->TSR |= CAN_TSR_RQCP2;
can_stm32_signal_tx_complete(&data->mb2);
}
if (can->TSR & CAN_TSR_TME) {
k_sem_give(&data->tx_int_sem);
}
}
#ifdef CONFIG_SOC_SERIES_STM32F0X
static void can_stm32_isr(const struct device *dev)
{
struct can_stm32_data *data;
const struct can_stm32_config *cfg;
CAN_TypeDef *can;
data = DEV_DATA(dev);
cfg = DEV_CFG(dev);
can = cfg->can;
can_stm32_tx_isr_handler(can, data);
can_stm32_rx_isr_handler(can, data);
if (can->MSR & CAN_MSR_ERRI) {
can_stm32_bus_state_change_isr(can, data);
can->MSR |= CAN_MSR_ERRI;
}
}
#else
static void can_stm32_rx_isr(const struct device *dev)
{
struct can_stm32_data *data;
const struct can_stm32_config *cfg;
CAN_TypeDef *can;
data = DEV_DATA(dev);
cfg = DEV_CFG(dev);
can = cfg->can;
can_stm32_rx_isr_handler(can, data);
}
static void can_stm32_tx_isr(const struct device *dev)
{
struct can_stm32_data *data;
const struct can_stm32_config *cfg;
CAN_TypeDef *can;
data = DEV_DATA(dev);
cfg = DEV_CFG(dev);
can = cfg->can;
can_stm32_tx_isr_handler(can, data);
}
static void can_stm32_state_change_isr(const struct device *dev)
{
struct can_stm32_data *data;
const struct can_stm32_config *cfg;
CAN_TypeDef *can;
data = DEV_DATA(dev);
cfg = DEV_CFG(dev);
can = cfg->can;
/*Signal bus-off to waiting tx*/
if (can->MSR & CAN_MSR_ERRI) {
can_stm32_tx_isr_handler(can, data);
can_stm32_bus_state_change_isr(can, data);
can->MSR |= CAN_MSR_ERRI;
}
}
#endif
static int can_enter_init_mode(CAN_TypeDef *can)
{
uint32_t start_time;
can->MCR |= CAN_MCR_INRQ;
start_time = k_cycle_get_32();
while ((can->MSR & CAN_MSR_INAK) == 0U) {
if (k_cycle_get_32() - start_time > CAN_INIT_TIMEOUT) {
can->MCR &= ~CAN_MCR_INRQ;
return CAN_TIMEOUT;
}
}
return 0;
}
static int can_leave_init_mode(CAN_TypeDef *can)
{
uint32_t start_time;
can->MCR &= ~CAN_MCR_INRQ;
start_time = k_cycle_get_32();
while ((can->MSR & CAN_MSR_INAK) != 0U) {
if (k_cycle_get_32() - start_time > CAN_INIT_TIMEOUT) {
return CAN_TIMEOUT;
}
}
return 0;
}
static int can_leave_sleep_mode(CAN_TypeDef *can)
{
uint32_t start_time;
can->MCR &= ~CAN_MCR_SLEEP;
start_time = k_cycle_get_32();
while ((can->MSR & CAN_MSR_SLAK) != 0) {
if (k_cycle_get_32() - start_time > CAN_INIT_TIMEOUT) {
return CAN_TIMEOUT;
}
}
return 0;
}
int can_stm32_runtime_configure(const struct device *dev, enum can_mode mode,
uint32_t bitrate)
{
CAN_HandleTypeDef hcan;
const struct can_stm32_config *cfg = DEV_CFG(dev);
CAN_TypeDef *can = cfg->can;
struct can_stm32_data *data = DEV_DATA(dev);
const struct device *clock;
uint32_t clock_rate;
uint32_t prescaler;
uint32_t reg_mode;
uint32_t ts1;
uint32_t ts2;
uint32_t sjw;
int ret;
clock = device_get_binding(STM32_CLOCK_CONTROL_NAME);
__ASSERT_NO_MSG(clock);
hcan.Instance = can;
ret = clock_control_get_rate(clock, (clock_control_subsys_t *) &cfg->pclken,
&clock_rate);
if (ret != 0) {
LOG_ERR("Failed call clock_control_get_rate: return [%d]", ret);
return -EIO;
}
if (!bitrate) {
bitrate = cfg->bus_speed;
}
prescaler = clock_rate / (BIT_SEG_LENGTH(cfg) * bitrate);
if (prescaler == 0U || prescaler > 1024) {
LOG_ERR("HAL_CAN_Init failed: prescaler > max (%d > 1024)",
prescaler);
return -EINVAL;
}
if (clock_rate % (BIT_SEG_LENGTH(cfg) * bitrate)) {
LOG_ERR("Prescaler is not a natural number! "
"prescaler = clock_rate / ((PROP_SEG1 + SEG2 + 1)"
" * bus_speed); "
"prescaler = %d / ((%d + %d + 1) * %d)",
clock_rate,
cfg->prop_ts1,
cfg->ts2,
bitrate);
}
__ASSERT(cfg->sjw >= 1, "SJW minimum is 1");
__ASSERT(cfg->sjw <= 4, "SJW maximum is 4");
__ASSERT(cfg->prop_ts1 >= 1, "PROP_TS1 minimum is 1");
__ASSERT(cfg->prop_ts1 <= 16, "PROP_TS1 maximum is 16");
__ASSERT(cfg->ts2 >= 1, "TS2 minimum is 1");
__ASSERT(cfg->ts2 <= 8, "TS2 maximum is 8");
ts1 = ((cfg->prop_ts1 - 1) & 0x0F) << CAN_BTR_TS1_Pos;
ts2 = ((cfg->ts2 - 1) & 0x07) << CAN_BTR_TS2_Pos;
sjw = ((cfg->sjw - 1) & 0x07) << CAN_BTR_SJW_Pos;
reg_mode = (mode == CAN_NORMAL_MODE) ? 0U :
(mode == CAN_LOOPBACK_MODE) ? CAN_BTR_LBKM :
(mode == CAN_SILENT_MODE) ? CAN_BTR_SILM :
CAN_BTR_LBKM | CAN_BTR_SILM;
k_mutex_lock(&data->inst_mutex, K_FOREVER);
ret = can_enter_init_mode(can);
if (ret) {
LOG_ERR("Failed to enter init mode");
goto done;
}
can->BTR = reg_mode | sjw | ts1 | ts2 | (prescaler - 1U);
ret = can_leave_init_mode(can);
if (ret) {
LOG_ERR("Failed to leave init mode");
goto done;
}
LOG_DBG("Runtime configure of %s done", dev->name);
ret = 0;
done:
k_mutex_unlock(&data->inst_mutex);
return ret;
}
static int can_stm32_init(const struct device *dev)
{
const struct can_stm32_config *cfg = DEV_CFG(dev);
struct can_stm32_data *data = DEV_DATA(dev);
CAN_TypeDef *can = cfg->can;
#if DT_NODE_HAS_STATUS(DT_NODELABEL(can2), okay)
CAN_TypeDef *master_can = cfg->master_can;
#endif
const struct device *clock;
int ret;
k_mutex_init(&data->inst_mutex);
k_sem_init(&data->tx_int_sem, 0, 1);
k_sem_init(&data->mb0.tx_int_sem, 0, 1);
k_sem_init(&data->mb1.tx_int_sem, 0, 1);
k_sem_init(&data->mb2.tx_int_sem, 0, 1);
data->mb0.tx_callback = NULL;
data->mb1.tx_callback = NULL;
data->mb2.tx_callback = NULL;
data->state_change_isr = NULL;
data->filter_usage = (1ULL << CAN_MAX_NUMBER_OF_FILTERS) - 1ULL;
(void)memset(data->rx_cb, 0, sizeof(data->rx_cb));
(void)memset(data->cb_arg, 0, sizeof(data->cb_arg));
clock = device_get_binding(STM32_CLOCK_CONTROL_NAME);
__ASSERT_NO_MSG(clock);
ret = clock_control_on(clock, (clock_control_subsys_t *) &cfg->pclken);
if (ret != 0) {
LOG_ERR("HAL_CAN_Init clock control on failed: %d", ret);
return -EIO;
}
/* Configure dt provided device signals when available */
ret = stm32_dt_pinctrl_configure(cfg->pinctrl,
cfg->pinctrl_len,
(uint32_t)cfg->can);
if (ret < 0) {
LOG_ERR("CAN pinctrl setup failed (%d)", ret);
return ret;
}
ret = can_leave_sleep_mode(can);
if (ret) {
LOG_ERR("Failed to exit sleep mode");
return ret;
}
ret = can_enter_init_mode(can);
if (ret) {
LOG_ERR("Failed to enter init mode");
return ret;
}
#if DT_NODE_HAS_STATUS(DT_NODELABEL(can2), okay)
master_can->FMR &= ~CAN_FMR_CAN2SB; /* Assign all filters to CAN2 */
#endif
/* Set TX priority to chronological order */
can->MCR |= CAN_MCR_TXFP;
can->MCR &= ~CAN_MCR_TTCM & ~CAN_MCR_TTCM & ~CAN_MCR_ABOM &
~CAN_MCR_AWUM & ~CAN_MCR_NART & ~CAN_MCR_RFLM;
#ifdef CONFIG_CAN_RX_TIMESTAMP
can->MCR |= CAN_MCR_TTCM;
#endif
#ifdef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
can->MCR |= CAN_MCR_ABOM;
#endif
ret = can_stm32_runtime_configure(dev, CAN_NORMAL_MODE, 0);
if (ret) {
return ret;
}
/* Leave sleep mode after reset*/
can->MCR &= ~CAN_MCR_SLEEP;
cfg->config_irq(can);
can->IER |= CAN_IER_TMEIE;
LOG_INF("Init of %s done", dev->name);
return 0;
}
static void can_stm32_register_state_change_isr(const struct device *dev,
can_state_change_isr_t isr)
{
struct can_stm32_data *data = DEV_DATA(dev);
const struct can_stm32_config *cfg = DEV_CFG(dev);
CAN_TypeDef *can = cfg->can;
data->state_change_isr = isr;
if (isr == NULL) {
can->IER &= ~CAN_IER_EPVIE;
} else {
can->IER |= CAN_IER_EPVIE;
}
}
static enum can_state can_stm32_get_state(const struct device *dev,
struct can_bus_err_cnt *err_cnt)
{
const struct can_stm32_config *cfg = DEV_CFG(dev);
CAN_TypeDef *can = cfg->can;
if (err_cnt) {
err_cnt->tx_err_cnt =
((can->ESR & CAN_ESR_TEC) >> CAN_ESR_TEC_Pos);
err_cnt->rx_err_cnt =
((can->ESR & CAN_ESR_REC) >> CAN_ESR_REC_Pos);
}
if (can->ESR & CAN_ESR_BOFF) {
return CAN_BUS_OFF;
}
if (can->ESR & CAN_ESR_EPVF) {
return CAN_ERROR_PASSIVE;
}
return CAN_ERROR_ACTIVE;
}
#ifndef CONFIG_CAN_AUTO_BUS_OFF_RECOVERY
int can_stm32_recover(const struct device *dev, k_timeout_t timeout)
{
const struct can_stm32_config *cfg = DEV_CFG(dev);
struct can_stm32_data *data = DEV_DATA(dev);
CAN_TypeDef *can = cfg->can;
int ret = CAN_TIMEOUT;
int64_t start_time;
if (!(can->ESR & CAN_ESR_BOFF)) {
return 0;
}
if (k_mutex_lock(&data->inst_mutex, K_FOREVER)) {
return CAN_TIMEOUT;
}
ret = can_enter_init_mode(can);
if (ret) {
goto done;
}
can_leave_init_mode(can);
start_time = k_uptime_ticks();
while (can->ESR & CAN_ESR_BOFF) {
if (timeout != K_FOREVER &&
k_uptime_ticks() - start_time >= timeout.ticks) {
goto done;
}
}
ret = 0;
done:
k_mutex_unlock(&data->inst_mutex);
return ret;
}
#endif /* CONFIG_CAN_AUTO_BUS_OFF_RECOVERY */
int can_stm32_send(const struct device *dev, const struct zcan_frame *msg,
k_timeout_t timeout, can_tx_callback_t callback,
void *callback_arg)
{
const struct can_stm32_config *cfg = DEV_CFG(dev);
struct can_stm32_data *data = DEV_DATA(dev);
CAN_TypeDef *can = cfg->can;
uint32_t transmit_status_register = can->TSR;
CAN_TxMailBox_TypeDef *mailbox = NULL;
struct can_mailbox *mb = NULL;
LOG_DBG("Sending %d bytes on %s. "
"Id: 0x%x, "
"ID type: %s, "
"Remote Frame: %s"
, msg->dlc, dev->name
, msg->id_type == CAN_STANDARD_IDENTIFIER ?
msg->std_id : msg->ext_id
, msg->id_type == CAN_STANDARD_IDENTIFIER ?
"standard" : "extended"
, msg->rtr == CAN_DATAFRAME ? "no" : "yes");
__ASSERT(msg->dlc == 0U || msg->data != NULL, "Dataptr is null");
if (msg->dlc > CAN_MAX_DLC) {
LOG_ERR("DLC of %d exceeds maximum (%d)", msg->dlc, CAN_MAX_DLC);
return CAN_TX_EINVAL;
}
if (can->ESR & CAN_ESR_BOFF) {
return CAN_TX_BUS_OFF;
}
k_mutex_lock(&data->inst_mutex, K_FOREVER);
while (!(transmit_status_register & CAN_TSR_TME)) {
k_mutex_unlock(&data->inst_mutex);
LOG_DBG("Transmit buffer full");
if (k_sem_take(&data->tx_int_sem, timeout)) {
return CAN_TIMEOUT;
}
k_mutex_lock(&data->inst_mutex, K_FOREVER);
transmit_status_register = can->TSR;
}
if (transmit_status_register & CAN_TSR_TME0) {
LOG_DBG("Using mailbox 0");
mailbox = &can->sTxMailBox[0];
mb = &(data->mb0);
} else if (transmit_status_register & CAN_TSR_TME1) {
LOG_DBG("Using mailbox 1");
mailbox = &can->sTxMailBox[1];
mb = &data->mb1;
} else if (transmit_status_register & CAN_TSR_TME2) {
LOG_DBG("Using mailbox 2");
mailbox = &can->sTxMailBox[2];
mb = &data->mb2;
}
mb->tx_callback = callback;
mb->callback_arg = callback_arg;
k_sem_reset(&mb->tx_int_sem);
/* mailbix identifier register setup */
mailbox->TIR &= CAN_TI0R_TXRQ;
if (msg->id_type == CAN_STANDARD_IDENTIFIER) {
mailbox->TIR |= (msg->std_id << CAN_TI0R_STID_Pos);
} else {
mailbox->TIR |= (msg->ext_id << CAN_TI0R_EXID_Pos)
| CAN_TI0R_IDE;
}
if (msg->rtr == CAN_REMOTEREQUEST) {
mailbox->TIR |= CAN_TI1R_RTR;
}
mailbox->TDTR = (mailbox->TDTR & ~CAN_TDT1R_DLC) |
((msg->dlc & 0xF) << CAN_TDT1R_DLC_Pos);
mailbox->TDLR = msg->data_32[0];
mailbox->TDHR = msg->data_32[1];
mailbox->TIR |= CAN_TI0R_TXRQ;
k_mutex_unlock(&data->inst_mutex);
if (callback == NULL) {
k_sem_take(&mb->tx_int_sem, K_FOREVER);
return mb->error_flags;
}
return 0;
}
static inline int can_stm32_check_free(void **arr, int start, int end)
{
int i;
for (i = start; i <= end; i++) {
if (arr[i] != NULL) {
return 0;
}
}
return 1;
}
static int can_stm32_shift_arr(void **arr, int start, int count)
{
void **start_ptr = arr + start;
size_t cnt;
if (start > CONFIG_CAN_MAX_FILTER) {
return CAN_NO_FREE_FILTER;
}
if (count > 0) {
void *move_dest;
/* Check if nothing used will be overwritten */
if (!can_stm32_check_free(arr, CONFIG_CAN_MAX_FILTER - count,
CONFIG_CAN_MAX_FILTER - 1)) {
return CAN_NO_FREE_FILTER;
}
/* No need to shift. Destination is already outside the arr*/
if ((start + count) >= CONFIG_CAN_MAX_FILTER) {
return 0;
}
cnt = (CONFIG_CAN_MAX_FILTER - start - count) * sizeof(void *);
move_dest = start_ptr + count;
memmove(move_dest, start_ptr, cnt);
(void)memset(start_ptr, 0, count * sizeof(void *));
} else if (count < 0) {
count = -count;
if (start - count < 0) {
return CAN_NO_FREE_FILTER;
}
cnt = (CONFIG_CAN_MAX_FILTER - start) * sizeof(void *);
memmove(start_ptr - count, start_ptr, cnt);
(void)memset(arr + CONFIG_CAN_MAX_FILTER - count, 0,
count * sizeof(void *));
}
return 0;
}
enum can_filter_type can_stm32_get_filter_type(int bank_nr, uint32_t mode_reg,
uint32_t scale_reg)
{
uint32_t mode_masked = (mode_reg >> bank_nr) & 0x01;
uint32_t scale_masked = (scale_reg >> bank_nr) & 0x01;
enum can_filter_type type = (scale_masked << 1) | mode_masked;
return type;
}
static int can_calc_filter_index(int filter_nr, uint32_t mode_reg, uint32_t scale_reg)
{
int filter_bank = filter_nr / 4;
int cnt = 0;
uint32_t mode_masked, scale_masked;
enum can_filter_type filter_type;
/*count filters in the banks before */
for (int i = 0; i < filter_bank; i++) {
filter_type = can_stm32_get_filter_type(i, mode_reg, scale_reg);
cnt += filter_in_bank[filter_type];
}
/* plus the filters in the same bank */
mode_masked = mode_reg & (1U << filter_bank);
scale_masked = scale_reg & (1U << filter_bank);
cnt += (!scale_masked && mode_masked) ? filter_nr & 0x03 :
(filter_nr & 0x03) >> 1;
return cnt;
}
static void can_stm32_set_filter_bank(int filter_nr,
CAN_FilterRegister_TypeDef *filter_reg,
enum can_filter_type filter_type,
uint32_t id, uint32_t mask)
{
switch (filter_type) {
case CAN_FILTER_STANDARD:
switch (filter_nr & 0x03) {
case 0:
filter_reg->FR1 = (filter_reg->FR1 & 0xFFFF0000) | id;
break;
case 1:
filter_reg->FR1 = (filter_reg->FR1 & 0x0000FFFF)
| (id << 16);
break;
case 2:
filter_reg->FR2 = (filter_reg->FR2 & 0xFFFF0000) | id;
break;
case 3:
filter_reg->FR2 = (filter_reg->FR2 & 0x0000FFFF)
| (id << 16);
break;
}
break;
case CAN_FILTER_STANDARD_MASKED:
switch (filter_nr & 0x02) {
case 0:
filter_reg->FR1 = id | (mask << 16);
break;
case 2:
filter_reg->FR2 = id | (mask << 16);
break;
}
break;
case CAN_FILTER_EXTENDED:
switch (filter_nr & 0x02) {
case 0:
filter_reg->FR1 = id;
break;
case 2:
filter_reg->FR2 = id;
break;
}
break;
case CAN_FILTER_EXTENDED_MASKED:
filter_reg->FR1 = id;
filter_reg->FR2 = mask;
break;
}
}
static inline void can_stm32_set_mode_scale(enum can_filter_type filter_type,
uint32_t *mode_reg, uint32_t *scale_reg,
int bank_nr)
{
uint32_t mode_reg_bit = (filter_type & 0x01) << bank_nr;
uint32_t scale_reg_bit = (filter_type >> 1) << bank_nr;
*mode_reg &= ~(1 << bank_nr);
*mode_reg |= mode_reg_bit;
*scale_reg &= ~(1 << bank_nr);
*scale_reg |= scale_reg_bit;
}
static inline uint32_t can_generate_std_mask(const struct zcan_filter *filter)
{
return (filter->std_id_mask << CAN_FIRX_STD_ID_POS) |
(filter->rtr_mask << CAN_FIRX_STD_RTR_POS) |
(1U << CAN_FIRX_STD_IDE_POS);
}
static inline uint32_t can_generate_ext_mask(const struct zcan_filter *filter)
{
return (filter->ext_id_mask << CAN_FIRX_EXT_EXT_ID_POS) |
(filter->rtr_mask << CAN_FIRX_EXT_RTR_POS) |
(1U << CAN_FIRX_EXT_IDE_POS);
}
static inline uint32_t can_generate_std_id(const struct zcan_filter *filter)
{
return (filter->std_id << CAN_FIRX_STD_ID_POS) |
(filter->rtr << CAN_FIRX_STD_RTR_POS);
}
static inline uint32_t can_generate_ext_id(const struct zcan_filter *filter)
{
return (filter->ext_id << CAN_FIRX_EXT_EXT_ID_POS) |
(filter->rtr << CAN_FIRX_EXT_RTR_POS) |
(1U << CAN_FIRX_EXT_IDE_POS);
}
static inline int can_stm32_set_filter(const struct zcan_filter *filter,
struct can_stm32_data *device_data,
CAN_TypeDef *can,
int *filter_index)
{
uint32_t mask = 0U;
uint32_t id = 0U;
int filter_nr = 0;
int filter_index_new = CAN_NO_FREE_FILTER;
int bank_nr;
uint32_t bank_bit;
int register_demand;
enum can_filter_type filter_type;
enum can_filter_type bank_mode;
if (filter->id_type == CAN_STANDARD_IDENTIFIER) {
id = can_generate_std_id(filter);
filter_type = CAN_FILTER_STANDARD;
if (filter->std_id_mask != CAN_STD_ID_MASK) {
mask = can_generate_std_mask(filter);
filter_type = CAN_FILTER_STANDARD_MASKED;
}
} else {
id = can_generate_ext_id(filter);
filter_type = CAN_FILTER_EXTENDED;
if (filter->ext_id_mask != CAN_EXT_ID_MASK) {
mask = can_generate_ext_mask(filter);
filter_type = CAN_FILTER_EXTENDED_MASKED;
}
}
register_demand = reg_demand[filter_type];
LOG_DBG("Setting filter ID: 0x%x, mask: 0x%x", filter->ext_id,
filter->ext_id_mask);
LOG_DBG("Filter type: %s ID %s mask (%d)",
(filter_type == CAN_FILTER_STANDARD ||
filter_type == CAN_FILTER_STANDARD_MASKED) ?
"standard" : "extended",
(filter_type == CAN_FILTER_STANDARD_MASKED ||
filter_type == CAN_FILTER_EXTENDED_MASKED) ?
"with" : "without",
filter_type);
do {
uint64_t usage_shifted = (device_data->filter_usage >> filter_nr);
uint64_t usage_demand_mask = (1ULL << register_demand) - 1;
bool bank_is_empty;
bank_nr = filter_nr / 4;
bank_bit = (1U << bank_nr);
bank_mode = can_stm32_get_filter_type(bank_nr, can->FM1R,
can->FS1R);
bank_is_empty = CAN_BANK_IS_EMPTY(device_data->filter_usage,
bank_nr);
if (!bank_is_empty && bank_mode != filter_type) {
filter_nr = (bank_nr + 1) * 4;
} else if (usage_shifted & usage_demand_mask) {
device_data->filter_usage &=
~(usage_demand_mask << filter_nr);
break;
} else {
filter_nr += register_demand;
}
if (!usage_shifted) {
LOG_INF("No free filter bank found");
return CAN_NO_FREE_FILTER;
}
} while (filter_nr < CAN_MAX_NUMBER_OF_FILTERS);
/* set the filter init mode */
can->FMR |= CAN_FMR_FINIT;
can->FA1R &= ~bank_bit;
/* TODO fifo balancing */
if (filter_type != bank_mode) {
int shift_width, start_index;
int res;
uint32_t mode_reg = can->FM1R;
uint32_t scale_reg = can->FS1R;
can_stm32_set_mode_scale(filter_type, &mode_reg, &scale_reg,
bank_nr);
shift_width = filter_in_bank[filter_type] - filter_in_bank[bank_mode];
filter_index_new = can_calc_filter_index(filter_nr, mode_reg,
scale_reg);
start_index = filter_index_new + filter_in_bank[bank_mode];
if (shift_width && start_index <= CAN_MAX_NUMBER_OF_FILTERS) {
res = can_stm32_shift_arr((void **)device_data->rx_cb,
start_index,
shift_width);
res |= can_stm32_shift_arr(device_data->cb_arg,
start_index,
shift_width);
if (filter_index_new >= CONFIG_CAN_MAX_FILTER || res) {
LOG_INF("No space for a new filter!");
filter_nr = CAN_NO_FREE_FILTER;
goto done;
}
}
can->FM1R = mode_reg;
can->FS1R = scale_reg;
} else {
filter_index_new = can_calc_filter_index(filter_nr, can->FM1R,
can->FS1R);
if (filter_index_new >= CAN_MAX_NUMBER_OF_FILTERS) {
filter_nr = CAN_NO_FREE_FILTER;
goto done;
}
}
can_stm32_set_filter_bank(filter_nr, &can->sFilterRegister[bank_nr],
filter_type, id, mask);
done:
can->FA1R |= bank_bit;
can->FMR &= ~(CAN_FMR_FINIT);
LOG_DBG("Filter set! Filter number: %d (index %d)",
filter_nr, filter_index_new);
*filter_index = filter_index_new;
return filter_nr;
}
static inline int can_stm32_attach(const struct device *dev,
can_rx_callback_t cb,
void *cb_arg,
const struct zcan_filter *filter)
{
const struct can_stm32_config *cfg = DEV_CFG(dev);
struct can_stm32_data *data = DEV_DATA(dev);
CAN_TypeDef *can = cfg->master_can;
int filter_index = 0;
int filter_nr;
filter_nr = can_stm32_set_filter(filter, data, can, &filter_index);
if (filter_nr != CAN_NO_FREE_FILTER) {
data->rx_cb[filter_index] = cb;
data->cb_arg[filter_index] = cb_arg;
}
return filter_nr;
}
int can_stm32_attach_isr(const struct device *dev, can_rx_callback_t isr,
void *cb_arg,
const struct zcan_filter *filter)
{
struct can_stm32_data *data = DEV_DATA(dev);
int filter_nr;
k_mutex_lock(&data->inst_mutex, K_FOREVER);
filter_nr = can_stm32_attach(dev, isr, cb_arg, filter);
k_mutex_unlock(&data->inst_mutex);
return filter_nr;
}
void can_stm32_detach(const struct device *dev, int filter_nr)
{
const struct can_stm32_config *cfg = DEV_CFG(dev);
struct can_stm32_data *data = DEV_DATA(dev);
CAN_TypeDef *can = cfg->master_can;
int bank_nr;
int filter_index;
uint32_t bank_bit;
uint32_t mode_reg;
uint32_t scale_reg;
enum can_filter_type type;
uint32_t reset_mask;