-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtfrecord_utils.py
65 lines (50 loc) · 2.35 KB
/
tfrecord_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Copyright 2018 by BQ. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
def int64_feature(value):
return tf.train.Feature(int64_list=tf.train.Int64List(value=[value]))
# _bytes is used for string/char values
def bytes_feature(value):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[value]))
def parse(serialized):
""" Convert the images and labels from records feature to Tensors.
Args:
serialized: A dataset comprising records from one TFRecord file.
"""
# Define a dict with the data-names and types we expect to find in the TFRecords file.
feature = {
'image': tf.FixedLenFeature([], tf.string),
'image/height': tf.FixedLenFeature([], tf.int64),
'image/width': tf.FixedLenFeature([], tf.int64),
'label': tf.FixedLenFeature([], tf.int64),
}
# Parse the serialized data so we get a dict with our data.
parsed_example = tf.parse_single_example(serialized=serialized,
features=feature)
# Get the image as raw bytes, and the height, width and label as int.
image_raw = parsed_example['image']
height = tf.cast(parsed_example['image/height'], tf.int32)
width = tf.cast(parsed_example['image/width'], tf.int32)
label = tf.cast(parsed_example['label'], tf.int32)
# Decode the raw bytes so it becomes a tensor with type.
image = tf.decode_raw(image_raw, tf.uint8)
# The type is now uint8 but we need it to be float.
image = tf.cast(image, tf.float32)
image = tf.reshape(image, (height, width, 3))
# The image and label are now correct TensorFlow types.
return image, label