forked from KimMeen/TGN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlink_prediction.py
346 lines (282 loc) · 16.3 KB
/
link_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 28 16:31:51 2020
@author: Ming Jin
TGN - Self-supervised link prediction
"""
import math
import logging
import time
import sys
import argparse
import torch
import numpy as np
import pickle
from pathlib import Path
from utils.utils import eval_edge_prediction
from net.tgn import TGN
from utils.utils import EarlyStopMonitor, RandEdgeSampler, get_neighbor_finder
from utils.data_processing import get_data, compute_time_statistics
torch.manual_seed(0)
np.random.seed(0)
### Argument and global variables
parser = argparse.ArgumentParser('TGN self-supervised training')
parser.add_argument('--data', type=str, help='Dataset name (eg. wikipedia or reddit)', default='wikipedia')
parser.add_argument('--different_new_nodes', action='store_true', help='Whether val and test set use different unseen nodes (to test inductiveness)')
parser.add_argument('--prefix', type=str, default='', help='Prefix to name the checkpoints')
parser.add_argument('--batch', type=int, default=200, help='Batch_size')
parser.add_argument('--n_epoch', type=int, default=50, help='Number of epochs')
parser.add_argument('--lr', type=float, default=0.0001, help='Learning rate')
parser.add_argument('--drop_out', type=float, default=0.1, help='Dropout probability')
parser.add_argument('--n_runs', type=int, default=1, help='Number of runs for this script')
parser.add_argument('--backprop_every', type=int, default=1, help='Every how many batches to backprop')
parser.add_argument('--gpu', type=int, default=0, help='Idx for the gpu to use')
parser.add_argument('--patience', type=int, default=5, help='Patience for early stopping')
parser.add_argument('--use_memory', action='store_true', help='Whether to augment the model with a node memory')
parser.add_argument('--memory_update_at_end', action='store_true', help='Whether to update memory at the end or at the start of the batch')
parser.add_argument('--node_dim', type=int, default=100, help='Dimensions of the node embedding')
parser.add_argument('--time_dim', type=int, default=100, help='Dimensions of the time embedding')
parser.add_argument('--message_dim', type=int, default=100, help='Dimensions of the messages')
parser.add_argument('--memory_dim', type=int, default=172, help='Dimensions of the memory for each node')
parser.add_argument('--neighbors', type=int, default=10, help='Number of neighbors to sample')
parser.add_argument('--uniform', action='store_true', help='take uniform sampling from temporal neighbors')
parser.add_argument('--embedding_module', type=str, default="graph_attention", choices=["graph_attention", "graph_sum", "identity", "time"], help='Type of embedding module')
parser.add_argument('--message_function', type=str, default="identity", choices=["mlp", "identity"], help='Type of message function')
parser.add_argument('--aggregator', type=str, default="last", choices=["last", "mean"], help='Type of message aggregator')
parser.add_argument('--memory_updater', type=str, default="gru", choices=["gru", "rnn"], help='Type of memory updater')
parser.add_argument('--n_layer', type=int, default=1, help='Number of network layers')
parser.add_argument('--n_head', type=int, default=2, help='Number of heads used in attention layer')
parser.add_argument('--use_source_embedding_in_message', action='store_true', help='Whether to use the embedding of the source node as part of the message')
parser.add_argument('--use_destination_embedding_in_message', action='store_true', help='Whether to use the embedding of the destination node as part of the message')
try:
args = parser.parse_args()
except:
parser.print_help()
sys.exit(0)
BATCH_SIZE = args.batch
NUM_NEIGHBORS = args.neighbors
NUM_NEG = 1
NUM_EPOCH = args.n_epoch
NUM_HEADS = args.n_head
DROP_OUT = args.drop_out
GPU = args.gpu
DATA = args.data
NUM_LAYER = args.n_layer
LEARNING_RATE = args.lr
NODE_DIM = args.node_dim # Notice: node_dim=172 for dataset without node features
TIME_DIM = args.time_dim
USE_MEMORY = args.use_memory
MESSAGE_DIM = args.message_dim
MEMORY_DIM = args.memory_dim
Path("./saved_models/").mkdir(parents=True, exist_ok=True)
Path("./saved_checkpoints/").mkdir(parents=True, exist_ok=True)
MODEL_SAVE_PATH = f'./saved_models/{args.prefix}-{args.data}.pth'
get_checkpoint_path = lambda epoch: f'./saved_checkpoints/{args.prefix}-{args.data}-{epoch}.pth'
### set up logger
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger()
logger.setLevel(logging.DEBUG)
Path("log/").mkdir(parents=True, exist_ok=True)
fh = logging.FileHandler('log/{}.log'.format(str(time.time())))
fh.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.WARN)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
fh.setFormatter(formatter)
ch.setFormatter(formatter)
logger.addHandler(fh)
logger.addHandler(ch)
logger.info(args)
### Extract data for training, validation and testing
node_features, edge_features, full_data, train_data, val_data, test_data, new_node_val_data, \
new_node_test_data = get_data(DATA, different_new_nodes_between_val_and_test=args.different_new_nodes)
# Initialize training neighbor finder to retrieve temporal graph
train_ngh_finder = get_neighbor_finder(train_data, args.uniform)
# Initialize validation and test neighbor finder to retrieve temporal graph
full_ngh_finder = get_neighbor_finder(full_data, args.uniform)
# Initialize negative samplers
# Set seeds for validation and testing so negatives are the same across different runs
# NB: in the inductive setting, negatives are sampled only amongst other new nodes
train_rand_sampler = RandEdgeSampler(train_data.sources, train_data.destinations)
val_rand_sampler = RandEdgeSampler(full_data.sources, full_data.destinations, seed=0)
test_rand_sampler = RandEdgeSampler(full_data.sources, full_data.destinations, seed=2)
nn_test_rand_sampler = RandEdgeSampler(new_node_test_data.sources, new_node_test_data.destinations, seed=3)
nn_val_rand_sampler = RandEdgeSampler(new_node_val_data.sources, new_node_val_data.destinations, seed=1)
# Set device
device_string = 'cuda:{}'.format(GPU) if torch.cuda.is_available() else 'cpu'
device = torch.device(device_string)
# Compute time statistics
mean_time_shift_src, std_time_shift_src, mean_time_shift_dst, std_time_shift_dst = \
compute_time_statistics(full_data.sources, full_data.destinations, full_data.timestamps)
############################### START #################################
for i in range(args.n_runs):
results_path = "results/{}_{}.pkl".format(args.prefix, i) if i > 0 else "results/{}.pkl".format(args.prefix)
Path("results/").mkdir(parents=True, exist_ok=True)
# Initialize Model
tgn = TGN(neighbor_finder=train_ngh_finder, node_features=node_features,
edge_features=edge_features, device=device,
n_layers=NUM_LAYER,
n_heads=NUM_HEADS, dropout=DROP_OUT, use_memory=USE_MEMORY,
message_dimension=MESSAGE_DIM, memory_dimension=MEMORY_DIM,
memory_update_at_start=not args.memory_update_at_end,
embedding_module_type=args.embedding_module,
message_function=args.message_function,
aggregator_type=args.aggregator,
memory_updater_type=args.memory_updater,
n_neighbors=NUM_NEIGHBORS,
mean_time_shift_src=mean_time_shift_src, std_time_shift_src=std_time_shift_src,
mean_time_shift_dst=mean_time_shift_dst, std_time_shift_dst=std_time_shift_dst,
use_destination_embedding_in_message=args.use_destination_embedding_in_message,
use_source_embedding_in_message=args.use_source_embedding_in_message)
criterion = torch.nn.BCELoss()
optimizer = torch.optim.Adam(tgn.parameters(), lr=LEARNING_RATE)
tgn = tgn.to(device)
num_instance = len(train_data.sources) # n_interactions
num_batch = math.ceil(num_instance / BATCH_SIZE)
logger.info('num of training instances: {}'.format(num_instance))
logger.info('num of batches per epoch: {}'.format(num_batch))
idx_list = np.arange(num_instance)
new_nodes_val_aps = []
val_aps = []
epoch_times = []
total_epoch_times = []
train_losses = []
early_stopper = EarlyStopMonitor(max_round=args.patience)
###################### TRAINING ###################
for epoch in range(NUM_EPOCH):
start_epoch = time.time()
# Reinitialize memory of the model at the start of each epoch
if USE_MEMORY:
tgn.memory.__init_memory__()
# Train using only training graph
tgn.set_neighbor_finder(train_ngh_finder)
m_loss = []
logger.info('start {} epoch'.format(epoch))
### Start to train on this epoch
for k in range(0, num_batch, args.backprop_every):
loss = 0
optimizer.zero_grad()
# Custom loop to allow to perform backpropagation only every a certain number of batches
for j in range(args.backprop_every):
batch_idx = k + j
if batch_idx >= num_batch:
continue
# get a src and dest node training batch
start_idx = batch_idx * BATCH_SIZE
end_idx = min(num_instance, start_idx + BATCH_SIZE)
sources_batch, destinations_batch = train_data.sources[start_idx:end_idx], \
train_data.destinations[start_idx:end_idx]
# as well as the edge and timestamps for this batch
edge_idxs_batch = train_data.edge_idxs[start_idx: end_idx]
timestamps_batch = train_data.timestamps[start_idx:end_idx]
# sample batch_size dest negatives (nodes)
size = len(sources_batch)
_, negatives_batch = train_rand_sampler.sample(size)
# self-supervised labels setting
with torch.no_grad():
pos_label = torch.ones(size, dtype=torch.float, device=device)
neg_label = torch.zeros(size, dtype=torch.float, device=device)
# forward propagation
tgn = tgn.train()
pos_prob, neg_prob = tgn.compute_edge_probabilities(sources_batch, destinations_batch, negatives_batch,
timestamps_batch, edge_idxs_batch, NUM_NEIGHBORS)
loss += criterion(pos_prob.squeeze(), pos_label) + criterion(neg_prob.squeeze(), neg_label)
# backward propagation
loss /= args.backprop_every
loss.backward()
optimizer.step()
m_loss.append(loss.item())
### Detach memory after 'args.backprop_every' number of batches so we don't backpropagate to the start of time
# TODO: If not, "Trying backpropagate but buffers have not been freed" error will happen because:
# 1). For mem_update_at_end: Memory updated at the end may contain this batch information that loss will not cover,
# so we have to detach to ensure the memory has the information that loss has covered to backpropagate.
# 2). For mem_update_at_start: We don't have the issue on (1) but some node messages may be removed after update_memory
# so we may try to backpropagate on those freed messages.
if USE_MEMORY:
tgn.memory.detach_memory()
epoch_time = time.time() - start_epoch
epoch_times.append(epoch_time)
####################### VALIDATION ######################
# Validation uses the full graph
tgn.set_neighbor_finder(full_ngh_finder)
if USE_MEMORY:
# Backup memory at the end of training, so later we can restore it and use it for the
# validation on unseen nodes (since validation edges are strictly later in time than training edges)
train_memory_backup = tgn.memory.backup_memory()
val_ap, val_auc = eval_edge_prediction(model=tgn, negative_edge_sampler=val_rand_sampler,
data=val_data, n_neighbors=NUM_NEIGHBORS)
if USE_MEMORY:
# Backup memory after validation so it can be used for testing (since test edges are
# strictly later in time than validation edges)
val_memory_backup = tgn.memory.backup_memory()
# Restore memory we had at the end of training to be used when validating on unseen nodes.
tgn.memory.restore_memory(train_memory_backup)
# Validate on unseen nodes
nn_val_ap, nn_val_auc = eval_edge_prediction(model=tgn, negative_edge_sampler=nn_val_rand_sampler,
data=new_node_val_data, n_neighbors=NUM_NEIGHBORS)
if USE_MEMORY:
# Restore memory we had at the end of validation to get ready for testing if:
# 1). This is last epoch
# 2). Early stopping happen on this epoch
tgn.memory.restore_memory(val_memory_backup)
new_nodes_val_aps.append(nn_val_ap)
val_aps.append(val_ap)
train_losses.append(np.mean(m_loss))
# Save temporary results to disk
pickle.dump({
"val_aps": val_aps,
"new_nodes_val_aps": new_nodes_val_aps,
"train_losses": train_losses,
"epoch_times": epoch_times,
"total_epoch_times": total_epoch_times
}, open(results_path, "wb"))
total_epoch_time = time.time() - start_epoch
total_epoch_times.append(total_epoch_time)
logger.info('epoch: {} took {:.2f}s'.format(epoch, total_epoch_time))
logger.info('Epoch mean loss: {}'.format(np.mean(m_loss)))
logger.info('transductive val auc: {}, inductive val auc: {}'.format(val_auc, nn_val_auc))
logger.info('transductive val ap: {}, inductive val ap: {}'.format(val_ap, nn_val_ap))
# Early stopping
if early_stopper.early_stop_check(val_ap):
logger.info('No improvement over {} epochs, stop training'.format(early_stopper.max_round))
logger.info(f'Loading the best model at epoch {early_stopper.best_epoch}')
best_model_path = get_checkpoint_path(early_stopper.best_epoch)
tgn.load_state_dict(torch.load(best_model_path))
logger.info(f'Loaded the best model at epoch {early_stopper.best_epoch} for inference')
tgn.eval()
break
else:
torch.save(tgn.state_dict(), get_checkpoint_path(epoch))
############################ TESTING ####################################
# Training has finished, we have loaded the best model, and we want to backup its current
# memory (which has seen validation edges) so that it can also be used when testing on unseen
# nodes
if USE_MEMORY:
val_memory_backup = tgn.memory.backup_memory()
### Test
tgn.embedding_module.neighbor_finder = full_ngh_finder
test_ap, test_auc = eval_edge_prediction(model=tgn, negative_edge_sampler=test_rand_sampler,
data=test_data, n_neighbors=NUM_NEIGHBORS)
if USE_MEMORY:
tgn.memory.restore_memory(val_memory_backup)
# Test on unseen nodes
nn_test_ap, nn_test_auc = eval_edge_prediction(model=tgn, negative_edge_sampler=nn_test_rand_sampler,
data=new_node_test_data, n_neighbors=NUM_NEIGHBORS)
logger.info('Test statistics: Transductive -- auc: {}, ap: {}'.format(test_auc, test_ap))
logger.info('Test statistics: Inductive -- auc: {}, ap: {}'.format(nn_test_auc, nn_test_ap))
# Save results for this run
pickle.dump({
"val_aps": val_aps,
"new_nodes_val_aps": new_nodes_val_aps,
"test_ap": test_ap,
"new_node_test_ap": nn_test_ap,
"epoch_times": epoch_times,
"train_losses": train_losses,
"total_epoch_times": total_epoch_times
}, open(results_path, "wb"))
logger.info('Saving TGN model')
if USE_MEMORY:
# Restore memory at the end of validation (save a model which is ready for testing)
tgn.memory.restore_memory(val_memory_backup)
torch.save(tgn.state_dict(), MODEL_SAVE_PATH)
logger.info('TGN model saved')