Skip to content

Bioinformatics data analysis and visualization toolkit

License

Notifications You must be signed in to change notification settings

julenmendieta/bioinfokit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

30 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Bioinformatics data analysis and visualization toolkit

How to install:

bioinfokit requires

  • Python 3
  • NumPy
  • scikit-learn
  • seaborn
  • pandas
  • matplotlib
  • SciPy
git clone https://github.com/reneshbedre/bioinfokit.git
cd bioinfokit
python3 setup.py install

Volcano plot

bioinfokit.visuz.volcano(table, lfc, pv, lfc_thr, pv_thr, color, valpha, geneid, genenames, gfont)

Parameters Description
table Comma separated (csv) gene expression table having atleast gene IDs, log fold change, P-values or adjusted P-values columns
lfc Name of a column having log fold change values [string][default:logFC]
pv Name of a column having P-values or adjusted P-values [string][default:p_values]
lfc_thr Log fold change cutoff for up and downregulated genes [float][default:1.0]
pv_thr P-values or adjusted P-values cutoff for up and downregulated genes [float][default:0.05]
color Tuple of two colors [tuple][default: ("green", "red")]
valpha Transparency of points on volcano plot [float (between 0 and 1)][default: 1.0]
geneid Name of a column having gene Ids. This is necessary for plotting gene label on the points [string][default: None]
genenames Tuple of gene Ids to label the points. The gene Ids must be present in the geneid column. If this option set to "deg" it will label all genes defined by lfc_thr and pv_thr [string, tuple, dict][default: None]
gfont Font size for genenames [float][default: 10.0]

Returns:

Volcano plot image in same directory (volcano.png)

Working example

MA plot

bioinfokit.visuz.ma(table, lfc, ct_count, st_count, pv_thr)

Parameters Description
table Comma separated (csv) gene expression table having atleast gene IDs, log fold change, and counts (control and treatment) columns
lfc Name of a column having log fold change values [default:logFC]
ct_count Name of a column having count values for control sample [default:value1]
st_count Name of a column having count values for treatment sample [default:value2]
lfc_thr Log fold change cutoff for up and downregulated genes [default:1]

Returns:

MA plot image in same directory (ma.png)

Working example

Inverted Volcano plot

bioinfokit.visuz.involcano(table, lfc, pv, lfc_thr, pv_thr, color, valpha, geneid, genenames, gfont)

Parameters Description
table Comma separated (csv) gene expression table having atleast gene IDs, log fold change, P-values or adjusted P-values
lfc Name of a column having log fold change values [default:logFC]
pv Name of a column having P-values or adjusted P-values [default:p_values]
lfc_thr Log fold change cutoff for up and downregulated genes [default:1]
pv_thr P-values or adjusted P-values cutoff for up and downregulated genes [default:0.05]
color Tuple of two colors [tuple][default: ("green", "red")]
valpha Transparency of points on volcano plot [float (between 0 and 1)][default: 1.0]
geneid Name of a column having gene Ids. This is necessary for plotting gene label on the points [string][default: None]
genenames Tuple of gene Ids to label the points. The gene Ids must be present in the geneid column. If this option set to "deg" it will label all genes defined by lfc_thr and pv_thr [string, tuple, dict][default: None]
gfont Font size for genenames [float][default: 10.0]

Returns:

Inverted volcano plot image in same directory (involcano.png)

Working example

Correlation matrix plot

bioinfokit.visuz.corr_mat(table, corm)

Parameters Description
table Dataframe object with numerical variables (columns) to find correlation. Ideally, you should have three or more variables. Dataframe should not have identifier column.
corm Correlation method [pearson,kendall,spearman] [default:pearson]

Returns:

Correlation matrix plot image in same directory (corr_mat.png)

Working example

Merge VCF files

bioinfokit.analys.mergevcf(file)

Parameters Description
file Multiple vcf files and separate them by comma

Returns:

Merged VCF file (merge_vcf.vcf)

Working example

Merge VCF files

bioinfokit.analys.mergevcf(file)

Parameters Description
file Multiple vcf files and separate them by comma

Returns:

Merged VCF file (merge_vcf.vcf)

Working example

PCA

bioinfokit.analys.pca(table)

Parameters Description
table Dataframe object with numerical variables (columns). Dataframe should not have identifier column.

Returns:

PCA summary, scree plot (screepca.png), and 2D/3D pca plots (pcaplot_2d.png and pcaplot_3d.png)

Working example

Reverse complement of DNA sequence

bioinfokit.analys.rev_com(sequence)

Parameters Description
seq DNA sequence to perform reverse complement
file DNA sequence in a fasta file

Returns:

Reverse complement of original DNA sequence

Working example

Sequencing coverage

bioinfokit.analys.seqcov(file, gs)

Parameters Description
file FASTQ file
gs Genome size in Mbp

Returns:

Sequencing coverage of the given FASTQ file

Working example

Convert TAB to CSV file

bioinfokit.analys.tcsv(file)

Parameters Description
file TAB delimited text file

Returns:

CSV delimited file (out.csv)

Heatmap

bioinfokit.visuz.hmap(table, cmap='seismic', scale=True, dim=(6, 8), clus=True, zscore=None, xlabel=True, ylabel=True, tickfont=(12, 12))

Parameters Description
file CSV delimited data file. It should not have NA or missing values
cmap Color Palette for heatmap [string][default: 'seismic']
scale Draw a color key with heatmap [boolean (True or False)][default: True]
dim heatmap figure size [tuple of two floats (width, height) in inches][default: (6, 8)]
clus Draw hierarchical clustering with heatmap [boolean (True or False)][default: True]
zscore Z-score standardization of row (0) or column (1). It works when clus is True. [None, 0, 1][default: None]
xlable Plot X-label [boolean (True or False)][default: True]
ylable Plot Y-label [boolean (True or False)][default: True]
tickfont Fontsize for X and Y-axis tick labels [tuple of two floats][default: (14, 14)]

Returns:

heatmap plot (heatmap.png, heatmap_clus.png)

Working example

Venn Diagram

bioinfokit.visuz.venn(vennset, venncolor, vennalpha, vennlabel)

Parameters Description
vennset Venn dataset for 3 and 2-way venn. Data should be in the format of (100,010,110,001,101,011,111) for 3-way venn and 2-way venn (10, 01, 11) [default: (1,1,1,1,1,1,1)]
venncolor Color Palette for Venn [color code][default: ('#00909e', '#f67280', '#ff971d')]
vennalpha Transparency of Venn [float (0 to 1)][default: 0.5]
vennlabel Labels to Venn [string][default: ('A', 'B', 'C')]

Returns:

Venn plot (venn3.png, venn2.png)

Working example

Two sample t-test with equal and unequal variance

bioinfokit.analys.ttsam(table, xfac, res, evar)

Parameters Description
table CSV delimited data file. It should be stacked table with independent (xfac) and dependent (res) variable columns.
xfac Independent group column name with two levels [string][default: None]
res Response variable column name [string][default: None]
evar t-test with equal variance [bool (True or False)][default: True]

Returns:

summary output and group boxplot (ttsam_boxplot.png)

Working example

Chi-square test for independence

bioinfokit.analys.chisq(table)

Parameters Description
table CSV delimited data file. It should be contingency table.

Returns:

summary output and variable mosaic plot (mosaic.png)

Working example

File format conversions

bioinfokit.analys.format

Function Parameters Description
bioinfokit.analys.format.fqtofa(file) FASTQ file Convert FASTQ file into FASTA format
bioinfokit.analys.format.hmmtocsv(file) HMM file Convert HMM text output (from HMMER tool) to CSV format
bioinfokit.analys.format.tabtocsv(file) TAB file Convert TAB file to CSV format
bioinfokit.analys.format.csvtotab(file) CSV file Convert CSV file to TAB format

Returns:

Output will be saved in same directory

Working example

One-way ANOVA

bioinfokit.stat.oanova(table, res, xfac, ph, phalpha)

Parameters Description
table Pandas dataframe in stacked table format
res Response variable (dependent variable) [string][default: None]
xfac Treatments or groups or factors (independent variable) [string][default: None]
ph perform pairwise comparisons with Tukey HSD test [bool (True or False)] [default: False]
phalpha significance level Tukey HSD test [float (0 to 1)][default: 0.05]

Returns:

ANOVA summary, multiple pairwise comparisons, and assumption tests statistics

Working example

Manhatten plot

bioinfokit.visuz.marker.mhat(df, chr, pv, color, dim, r, ar, gwas_sign_line, gwasp, dotsize, markeridcol, markernames, gfont, valpha)

Parameters Description
df Pandas dataframe object with atleast SNP, chromosome, and P-values columns
chr Name of a column having chromosome numbers [string][default:None]
pv Name of a column having P-values. Must be numeric column [string][default:None]
color List the name of the colors to be plotted. It can accept two alternate colors or the number colors equal to chromosome number. If nothing (None) provided, it will randomly assign the color to each chromosome [list][default:None]
dim Figure size [tuple of two floats (width, height) in inches][default: (6, 4)]
r Figure resolution in dpi [int][default: 300]
ar Rotation of X-axis labels [float][default: 90]
gwas_sign_line Plot statistical significant threshold line defined by option gwasp [bool (True or False)][default: False]
gwasp Statistical significant threshold to identify significant SNPs [float][default: 5E-08]
dotsize The size of the dots in the plot [float][default: 8]
markeridcol Name of a column having SNPs. This is necessary for plotting SNP names on the plot [string][default: None]
markernames The list of the SNPs to display on the plot. These SNP should be present in SNP column. Additionally, it also accepts the dict of SNPs and its associated gene name. If this option set to True, it will label all SNPs with P-value significant score defined by gwasp [string, list, dict][default: True]
gfont Font size for SNP names to display on the plot [float][default: 8]
valpha Transparency of points on plot [float (between 0 and 1)][default: 1.0]

Returns:

Manhatten plot image in same directory (manhatten.png)

Working example

About

Bioinformatics data analysis and visualization toolkit

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%