forked from influxdata/influxdb-client-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_WriteApiDataFrame.py
594 lines (477 loc) · 28.9 KB
/
test_WriteApiDataFrame.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
import time
import unittest
from datetime import timedelta
from io import StringIO
from influxdb_client import InfluxDBClient, WriteOptions, WriteApi, WritePrecision
from influxdb_client.client.write.dataframe_serializer import data_frame_to_list_of_points, DataframeSerializer
from influxdb_client.client.write.point import DEFAULT_WRITE_PRECISION
from influxdb_client.client.write_api import SYNCHRONOUS, PointSettings
from tests.base_test import BaseTest
class DataFrameWriteTest(BaseTest):
def setUp(self) -> None:
super().setUp()
self.influxDb_client = InfluxDBClient(url="http://localhost:8086", token="my-token", debug=False)
self.write_options = WriteOptions(batch_size=10_000, flush_interval=5_000, retry_interval=3_000)
self._write_client = WriteApi(influxdb_client=self.influxDb_client, write_options=self.write_options)
def tearDown(self) -> None:
super().tearDown()
self._write_client.close()
def test_write_num_py(self):
from influxdb_client.extras import pd, np
bucket = self.create_test_bucket()
now = pd.Timestamp('2020-04-05 00:00+00:00')
data_frame = pd.DataFrame(data=[["coyote_creek", np.int64(100.5)], ["coyote_creek", np.int64(200)]],
index=[now + timedelta(hours=1), now + timedelta(hours=2)],
columns=["location", "water_level"])
write_api = self.client.write_api(write_options=SYNCHRONOUS)
write_api.write(bucket.name, record=data_frame, data_frame_measurement_name='h2o_feet',
data_frame_tag_columns=['location'])
write_api.close()
result = self.query_api.query(
"from(bucket:\"" + bucket.name + "\") |> range(start: 1970-01-01T00:00:00.000000001Z)",
self.my_organization.id)
self.assertEqual(1, len(result))
self.assertEqual(2, len(result[0].records))
self.assertEqual(result[0].records[0].get_value(), 100.0)
self.assertEqual(result[0].records[1].get_value(), 200.0)
pass
class DataSerializerTest(unittest.TestCase):
@unittest.skip('Test big data')
def test_convert_data_frame(self):
from influxdb_client.extras import pd, np
num_rows = 1500000
col_data = {
'time': np.arange(0, num_rows, 1, dtype=int),
'col1': np.random.choice(['test_a', 'test_b', 'test_c'], size=(num_rows,)),
}
for n in range(2, 9):
col_data[f'col{n}'] = np.random.rand(num_rows)
data_frame = pd.DataFrame(data=col_data)
print(data_frame)
start = time.time()
data_frame_to_list_of_points(data_frame, PointSettings(),
data_frame_measurement_name='h2o_feet',
data_frame_tag_columns=['location'])
print("Time elapsed: ", (time.time() - start))
def test_write_nan(self):
from influxdb_client.extras import pd, np
now = pd.Timestamp('2020-04-05 00:00+00:00')
data_frame = pd.DataFrame(data=[
[3.1955, np.nan, 20.514305, np.nan],
[5.7310, np.nan, 23.328710, np.nan],
[np.nan, 3.138664, np.nan, 20.755026],
[5.7310, 5.139563, 23.328710, 19.791240],
[np.nan, np.nan, np.nan, np.nan],
],
index=[now, now + timedelta(minutes=30), now + timedelta(minutes=60),
now + timedelta(minutes=90), now + timedelta(minutes=120)],
columns=["actual_kw_price", "forecast_kw_price", "actual_general_use",
"forecast_general_use"])
points = data_frame_to_list_of_points(data_frame=data_frame, point_settings=PointSettings(),
data_frame_measurement_name='measurement')
self.assertEqual(4, len(points))
self.assertEqual("measurement actual_general_use=20.514305,actual_kw_price=3.1955 1586044800000000000",
points[0])
self.assertEqual("measurement actual_general_use=23.32871,actual_kw_price=5.731 1586046600000000000",
points[1])
self.assertEqual("measurement forecast_general_use=20.755026,forecast_kw_price=3.138664 1586048400000000000",
points[2])
self.assertEqual("measurement actual_general_use=23.32871,actual_kw_price=5.731,forecast_general_use=19.79124"
",forecast_kw_price=5.139563 1586050200000000000",
points[3])
def test_write_tag_nan(self):
from influxdb_client.extras import pd, np
now = pd.Timestamp('2020-04-05 00:00+00:00')
data_frame = pd.DataFrame(data=[
["", 3.1955, 20.514305],
['', 5.7310, 23.328710],
[np.nan, 5.7310, 23.328710],
["tag", 3.138664, 20.755026],
],
index=[now, now + timedelta(minutes=30),
now + timedelta(minutes=60), now + timedelta(minutes=90)],
columns=["tag", "actual_kw_price", "forecast_kw_price"])
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(),
data_frame_measurement_name='measurement',
data_frame_tag_columns={"tag"})
self.assertEqual(4, len(points))
self.assertEqual("measurement actual_kw_price=3.1955,forecast_kw_price=20.514305 1586044800000000000",
points[0])
self.assertEqual("measurement actual_kw_price=5.731,forecast_kw_price=23.32871 1586046600000000000",
points[1])
self.assertEqual("measurement actual_kw_price=5.731,forecast_kw_price=23.32871 1586048400000000000",
points[2])
self.assertEqual("measurement,tag=tag actual_kw_price=3.138664,forecast_kw_price=20.755026 1586050200000000000",
points[3])
def test_write_object_field_nan(self):
from influxdb_client.extras import pd, np
now = pd.Timestamp('2020-04-05 00:00+00:00')
data_frame = pd.DataFrame(data=[
["foo", 1],
[np.nan, 2],
],
index=[now, now + timedelta(minutes=30)],
columns=["obj", "val"])
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(),
data_frame_measurement_name='measurement')
self.assertEqual(2, len(points))
self.assertEqual("measurement obj=\"foo\",val=1i 1586044800000000000",
points[0])
self.assertEqual("measurement val=2i 1586046600000000000",
points[1])
def test_write_field_bool(self):
from influxdb_client.extras import pd
now = pd.Timestamp('2020-04-05 00:00+00:00')
data_frame = pd.DataFrame(data=[
[True],
[False],
],
index=[now, now + timedelta(minutes=30)],
columns=["status"])
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(),
data_frame_measurement_name='measurement')
self.assertEqual(2, len(points))
self.assertEqual("measurement status=True 1586044800000000000",
points[0])
self.assertEqual("measurement status=False 1586046600000000000",
points[1])
def test_escaping_measurement(self):
from influxdb_client.extras import pd, np
now = pd.Timestamp('2020-04-05 00:00+00:00')
data_frame = pd.DataFrame(data=[
["coyote_creek", np.int64(100.5)],
["coyote_creek", np.int64(200)],
],
index=[now + timedelta(hours=1), now + timedelta(hours=2)],
columns=["location", "water_level"])
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(),
data_frame_measurement_name='measu rement',
data_frame_tag_columns={"tag"})
self.assertEqual(2, len(points))
self.assertEqual("measu\\ rement location=\"coyote_creek\",water_level=100i 1586048400000000000",
points[0])
self.assertEqual("measu\\ rement location=\"coyote_creek\",water_level=200i 1586052000000000000",
points[1])
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(),
data_frame_measurement_name='measu\nrement2',
data_frame_tag_columns={"tag"})
self.assertEqual(2, len(points))
self.assertEqual("measu\\nrement2 location=\"coyote_creek\",water_level=100i 1586048400000000000",
points[0])
self.assertEqual("measu\\nrement2 location=\"coyote_creek\",water_level=200i 1586052000000000000",
points[1])
def test_tag_escaping_key_and_value(self):
from influxdb_client.extras import pd, np
now = pd.Timestamp('2020-04-05 00:00+00:00')
data_frame = pd.DataFrame(data=[["carriage\nreturn", "new\nline", "t\tab", np.int64(2)], ],
index=[now + timedelta(hours=1), ],
columns=["carriage\rreturn", "new\nline", "t\tab", "l\ne\rv\tel"])
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(),
data_frame_measurement_name='h\n2\ro\t_data',
data_frame_tag_columns={"new\nline", "carriage\rreturn", "t\tab"})
self.assertEqual(1, len(points))
self.assertEqual(
"h\\n2\\ro\\t_data,carriage\\rreturn=carriage\\nreturn,new\\nline=new\\nline,t\\tab=t\\tab l\\ne\\rv\\tel=2i 1586048400000000000",
points[0])
def test_tags_order(self):
from influxdb_client.extras import pd, np
now = pd.Timestamp('2020-04-05 00:00+00:00')
data_frame = pd.DataFrame(data=[["c", "a", "b", np.int64(2)], ],
index=[now + timedelta(hours=1), ],
columns=["c", "a", "b", "level"])
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(),
data_frame_measurement_name='h2o',
data_frame_tag_columns={"c", "a", "b"})
self.assertEqual(1, len(points))
self.assertEqual("h2o,a=a,b=b,c=c level=2i 1586048400000000000", points[0])
def test_escape_text_value(self):
from influxdb_client.extras import pd
now = pd.Timestamp('2020-04-05 00:00+00:00')
an_hour_ago = now - timedelta(hours=1)
test = [{'a': an_hour_ago, 'b': 'hello world', 'c': 1, 'd': 'foo bar'},
{'a': now, 'b': 'goodbye cruel world', 'c': 2, 'd': 'bar foo'}]
data_frame = pd.DataFrame(test)
data_frame = data_frame.set_index('a')
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(),
data_frame_measurement_name='test',
data_frame_tag_columns=['d'])
self.assertEqual(2, len(points))
self.assertEqual("test,d=foo\\ bar b=\"hello world\",c=1i 1586041200000000000", points[0])
self.assertEqual("test,d=bar\\ foo b=\"goodbye cruel world\",c=2i 1586044800000000000", points[1])
def test_with_default_tags(self):
from influxdb_client.extras import pd
now = pd.Timestamp('2020-04-05 00:00+00:00')
data_frame = pd.DataFrame(data={
'value': [1, 2],
't1': ['a1', 'a2'],
't3': ['c1', 'c2'],
},
index=[now + timedelta(hours=1), now + timedelta(hours=2)])
original_data = data_frame.copy()
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(t2='every'),
data_frame_measurement_name='h2o',
data_frame_tag_columns={"t1", "t3"})
self.assertEqual(2, len(points))
self.assertEqual("h2o,t1=a1,t2=every,t3=c1 value=1i 1586048400000000000", points[0])
self.assertEqual("h2o,t1=a2,t2=every,t3=c2 value=2i 1586052000000000000", points[1])
# Check that the data frame hasn't been changed (an earlier version did change it)
self.assertEqual(True, (data_frame == original_data).all(axis=None), f'data changed; old:\n{original_data}\nnew:\n{data_frame}')
# Check that the default tags won't override actual column data.
# This is arguably incorrect behavior, but it's how it works currently.
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(t1='every'),
data_frame_measurement_name='h2o',
data_frame_tag_columns={"t1", "t3"})
self.assertEqual(2, len(points))
self.assertEqual("h2o,t1=a1,t3=c1 value=1i 1586048400000000000", points[0])
self.assertEqual("h2o,t1=a2,t3=c2 value=2i 1586052000000000000", points[1])
self.assertEqual(True, (data_frame == original_data).all(axis=None), f'data changed; old:\n{original_data}\nnew:\n{data_frame}')
def test_with_period_index(self):
from influxdb_client.extras import pd
data_frame = pd.DataFrame(data={
'value': [1, 2],
},
index=pd.period_range(start='2020-04-05 01:00', freq='H', periods=2))
points = data_frame_to_list_of_points(data_frame=data_frame,
point_settings=PointSettings(),
data_frame_measurement_name='h2o')
self.assertEqual(2, len(points))
self.assertEqual("h2o value=1i 1586048400000000000", points[0])
self.assertEqual("h2o value=2i 1586052000000000000", points[1])
def test_write_num_py_floats(self):
from influxdb_client.extras import pd, np
now = pd.Timestamp('2020-04-05 00:00+00:00')
float_types = [np.float16, np.float32, np.float64]
if hasattr(np, 'float128'):
float_types.append(np.float128)
for np_float_type in float_types:
data_frame = pd.DataFrame([15.5], index=[now], columns=['level']).astype(np_float_type)
points = data_frame_to_list_of_points(data_frame=data_frame,
data_frame_measurement_name='h2o',
point_settings=PointSettings())
self.assertEqual(1, len(points))
self.assertEqual("h2o level=15.5 1586044800000000000", points[0], msg=f'Current type: {np_float_type}')
def test_write_precision(self):
from influxdb_client.extras import pd
now = pd.Timestamp('2020-04-05 00:00+00:00')
precisions = [
(WritePrecision.NS, 1586044800000000000),
(WritePrecision.US, 1586044800000000),
(WritePrecision.MS, 1586044800000),
(WritePrecision.S, 1586044800),
(None, 1586044800000000000)
]
for precision in precisions:
data_frame = pd.DataFrame([15], index=[now], columns=['level'])
points = data_frame_to_list_of_points(data_frame=data_frame,
data_frame_measurement_name='h2o',
point_settings=PointSettings(),
precision=precision[0])
self.assertEqual(1, len(points))
self.assertEqual(f"h2o level=15i {precision[1]}", points[0])
def test_index_not_periodIndex_respect_write_precision(self):
from influxdb_client.extras import pd
precisions = [
(WritePrecision.NS, 1586044800000000000),
(WritePrecision.US, 1586044800000000),
(WritePrecision.MS, 1586044800000),
(WritePrecision.S, 1586044800),
(None, 1586044800000000000)
]
for precision in precisions:
data_frame = pd.DataFrame([15], index=[precision[1]], columns=['level'])
points = data_frame_to_list_of_points(data_frame=data_frame,
data_frame_measurement_name='h2o',
point_settings=PointSettings(),
precision=precision[0])
self.assertEqual(1, len(points))
self.assertEqual(f"h2o level=15i {precision[1]}", points[0])
def test_serialize_strings_with_commas(self):
from influxdb_client.extras import pd
csv = StringIO("""sep=;
Date;Entry Type;Value;Currencs;Category;Person;Account;Counter Account;Group;Note;Recurring;
"01.10.2018";"Expense";"-1,00";"EUR";"Testcategory";"";"Testaccount";"";"";"This, works";"no";
"02.10.2018";"Expense";"-1,00";"EUR";"Testcategory";"";"Testaccount";"";"";"This , works not";"no";
""")
data_frame = pd.read_csv(csv, sep=";", skiprows=1, decimal=",", encoding="utf-8")
data_frame['Date'] = pd.to_datetime(data_frame['Date'], format="%d.%m.%Y")
data_frame.set_index('Date', inplace=True)
points = data_frame_to_list_of_points(data_frame=data_frame,
data_frame_measurement_name="bookings",
data_frame_tag_columns=['Entry Type', 'Category', 'Person', 'Account'],
point_settings=PointSettings())
self.assertEqual(2, len(points))
self.assertEqual("bookings,Account=Testaccount,Category=Testcategory,Entry\\ Type=Expense Currencs=\"EUR\",Note=\"This, works\",Recurring=\"no\",Value=-1.0 1538352000000000000", points[0])
self.assertEqual("bookings,Account=Testaccount,Category=Testcategory,Entry\\ Type=Expense Currencs=\"EUR\",Note=\"This , works not\",Recurring=\"no\",Value=-1.0 1538438400000000000", points[1])
def test_without_tags_and_fields_with_nan(self):
from influxdb_client.extras import pd, np
df = pd.DataFrame({
'a': np.arange(0., 3.),
'b': [0., np.nan, 1.],
}).set_index(pd.to_datetime(['2021-01-01 0:00', '2021-01-01 0:01', '2021-01-01 0:02']))
points = data_frame_to_list_of_points(data_frame=df,
data_frame_measurement_name="test",
point_settings=PointSettings())
self.assertEqual(3, len(points))
self.assertEqual("test a=0.0,b=0.0 1609459200000000000", points[0])
self.assertEqual("test a=1.0 1609459260000000000", points[1])
self.assertEqual("test a=2.0,b=1.0 1609459320000000000", points[2])
def test_use_timestamp_from_specified_column(self):
from influxdb_client.extras import pd
data_frame = pd.DataFrame(data={
'column_time': ['2020-04-05', '2020-05-05'],
'value1': [10, 20],
'value2': [30, 40],
}, index=['A', 'B'])
points = data_frame_to_list_of_points(data_frame=data_frame,
data_frame_measurement_name="test",
data_frame_timestamp_column="column_time",
point_settings=PointSettings())
self.assertEqual(2, len(points))
self.assertEqual('test value1=10i,value2=30i 1586044800000000000', points[0])
self.assertEqual('test value1=20i,value2=40i 1588636800000000000', points[1])
def test_str_format_for_timestamp(self):
from influxdb_client.extras import pd
time_formats = [
('2018-10-26', 'test value1=10i,value2=20i 1540512000000000000'),
('2018-10-26 10:00', 'test value1=10i,value2=20i 1540548000000000000'),
('2018-10-26 10:00:00-05:00', 'test value1=10i,value2=20i 1540566000000000000'),
('2018-10-26T11:00:00+00:00', 'test value1=10i,value2=20i 1540551600000000000'),
('2018-10-26 12:00:00+00:00', 'test value1=10i,value2=20i 1540555200000000000'),
('2018-10-26T16:00:00-01:00', 'test value1=10i,value2=20i 1540573200000000000'),
]
for time_format in time_formats:
data_frame = pd.DataFrame(data={
'column_time': [time_format[0]],
'value1': [10],
'value2': [20],
}, index=['A'])
points = data_frame_to_list_of_points(data_frame=data_frame,
data_frame_measurement_name="test",
data_frame_timestamp_column="column_time",
point_settings=PointSettings())
self.assertEqual(1, len(points))
self.assertEqual(time_format[1], points[0])
def test_specify_timezone(self):
from influxdb_client.extras import pd
data_frame = pd.DataFrame(data={
'column_time': ['2020-05-24 10:00', '2020-05-24 01:00'],
'value1': [10, 20],
'value2': [30, 40],
}, index=['A', 'B'])
points = data_frame_to_list_of_points(data_frame=data_frame,
data_frame_measurement_name="test",
data_frame_timestamp_column="column_time",
data_frame_timestamp_timezone="Europe/Berlin",
point_settings=PointSettings())
self.assertEqual(2, len(points))
self.assertEqual('test value1=10i,value2=30i 1590307200000000000', points[0])
self.assertEqual('test value1=20i,value2=40i 1590274800000000000', points[1])
def test_specify_timezone_date_time_index(self):
from influxdb_client.extras import pd
data_frame = pd.DataFrame(data={
'value1': [10, 20],
'value2': [30, 40],
}, index=[pd.Timestamp('2020-05-24 10:00'), pd.Timestamp('2020-05-24 01:00')])
points = data_frame_to_list_of_points(data_frame=data_frame,
data_frame_measurement_name="test",
data_frame_timestamp_timezone="Europe/Berlin",
point_settings=PointSettings())
self.assertEqual(2, len(points))
self.assertEqual('test value1=10i,value2=30i 1590307200000000000', points[0])
self.assertEqual('test value1=20i,value2=40i 1590274800000000000', points[1])
def test_specify_timezone_period_time_index(self):
from influxdb_client.extras import pd
data_frame = pd.DataFrame(data={
'value1': [10, 20],
'value2': [30, 40],
}, index=pd.period_range(start='2020-05-24 10:00', freq='H', periods=2))
print(data_frame.to_string())
points = data_frame_to_list_of_points(data_frame=data_frame,
data_frame_measurement_name="test",
data_frame_timestamp_timezone="Europe/Berlin",
point_settings=PointSettings())
self.assertEqual(2, len(points))
self.assertEqual('test value1=10i,value2=30i 1590307200000000000', points[0])
self.assertEqual('test value1=20i,value2=40i 1590310800000000000', points[1])
def test_serialization_for_nan_in_columns_starting_with_digits(self):
from influxdb_client.extras import pd
from influxdb_client.extras import np
data_frame = pd.DataFrame(data={
'1value': [np.nan, 30.0, np.nan, 30.0, np.nan],
'2value': [30.0, np.nan, np.nan, np.nan, np.nan],
'3value': [30.0, 30.0, 30.0, np.nan, np.nan],
'avalue': [30.0, 30.0, 30.0, 30.0, 30.0]
}, index=pd.period_range('2020-05-24 10:00', freq='H', periods=5))
points = data_frame_to_list_of_points(data_frame,
PointSettings(),
data_frame_measurement_name='test')
self.assertEqual(5, len(points))
self.assertEqual('test 2value=30.0,3value=30.0,avalue=30.0 1590314400000000000', points[0])
self.assertEqual('test 1value=30.0,3value=30.0,avalue=30.0 1590318000000000000', points[1])
self.assertEqual('test 3value=30.0,avalue=30.0 1590321600000000000', points[2])
self.assertEqual('test 1value=30.0,avalue=30.0 1590325200000000000', points[3])
self.assertEqual('test avalue=30.0 1590328800000000000', points[4])
data_frame = pd.DataFrame(data={
'1value': [np.nan],
'avalue': [30.0],
'bvalue': [30.0]
}, index=pd.period_range('2020-05-24 10:00', freq='H', periods=1))
points = data_frame_to_list_of_points(data_frame,
PointSettings(),
data_frame_measurement_name='test')
self.assertEqual(1, len(points))
self.assertEqual('test avalue=30.0,bvalue=30.0 1590314400000000000', points[0])
class DataSerializerChunksTest(unittest.TestCase):
def test_chunks(self):
from influxdb_client.extras import pd
data_frame = pd.DataFrame(
data=[
["a", 1, 2],
["b", 3, 4],
["c", 5, 6],
["d", 7, 8],
],
index=[1, 2, 3, 4],
columns=["tag", "field1", "field2"])
#
# Batch size = 2
#
serializer = DataframeSerializer(data_frame, PointSettings(), DEFAULT_WRITE_PRECISION, 2,
data_frame_measurement_name='m', data_frame_tag_columns={"tag"})
self.assertEqual(2, serializer.number_of_chunks)
self.assertEqual(['m,tag=a field1=1i,field2=2i 1',
'm,tag=b field1=3i,field2=4i 2'], serializer.serialize(chunk_idx=0))
self.assertEqual(['m,tag=c field1=5i,field2=6i 3',
'm,tag=d field1=7i,field2=8i 4'], serializer.serialize(chunk_idx=1))
#
# Batch size = 10
#
serializer = DataframeSerializer(data_frame, PointSettings(), DEFAULT_WRITE_PRECISION, 10,
data_frame_measurement_name='m', data_frame_tag_columns={"tag"})
self.assertEqual(1, serializer.number_of_chunks)
self.assertEqual(['m,tag=a field1=1i,field2=2i 1',
'm,tag=b field1=3i,field2=4i 2',
'm,tag=c field1=5i,field2=6i 3',
'm,tag=d field1=7i,field2=8i 4'
], serializer.serialize(chunk_idx=0))
#
# Batch size = 3
#
serializer = DataframeSerializer(data_frame, PointSettings(), DEFAULT_WRITE_PRECISION, 3,
data_frame_measurement_name='m', data_frame_tag_columns={"tag"})
self.assertEqual(2, serializer.number_of_chunks)
self.assertEqual(['m,tag=a field1=1i,field2=2i 1',
'm,tag=b field1=3i,field2=4i 2',
'm,tag=c field1=5i,field2=6i 3'
], serializer.serialize(chunk_idx=0))
self.assertEqual(['m,tag=d field1=7i,field2=8i 4'], serializer.serialize(chunk_idx=1))