-
Notifications
You must be signed in to change notification settings - Fork 39
/
train.py
76 lines (57 loc) · 2.68 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
#!/usr/bin/env python
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import tensorflow as tf
import util,biaffine_ner_model
if __name__ == "__main__":
config = util.initialize_from_env()
report_frequency = config["report_frequency"]
eval_frequency = config["eval_frequency"]
max_step = config["max_step"]
model = biaffine_ner_model.BiaffineNERModel(config)
saver = tf.train.Saver(max_to_keep=1)
log_dir = config["log_dir"]
writer = tf.summary.FileWriter(log_dir, flush_secs=20)
max_f1 = 0
best_step = 0
session_config = tf.ConfigProto()
session_config.gpu_options.allow_growth = True
session_config.allow_soft_placement = True
with tf.Session(config=session_config) as session:
session.run(tf.global_variables_initializer())
model.start_enqueue_thread(session)
accumulated_loss = 0.0
ckpt = tf.train.get_checkpoint_state(log_dir)
if ckpt and ckpt.model_checkpoint_path:
print("Restoring from: {}".format(ckpt.model_checkpoint_path))
saver.restore(session, ckpt.model_checkpoint_path)
initial_time = time.time()
while True:
tf_loss, tf_global_step, _ = session.run([model.loss, model.global_step, model.train_op])
accumulated_loss += tf_loss
if tf_global_step % report_frequency == 0:
total_time = time.time() - initial_time
steps_per_second = tf_global_step / total_time
average_loss = accumulated_loss / report_frequency
print("[{}] loss={:.2f}, steps/s={:.2f}".format(tf_global_step, average_loss, steps_per_second))
writer.add_summary(util.make_summary({"loss": average_loss}), tf_global_step)
accumulated_loss = 0.0
if tf_global_step % eval_frequency == 0:
saver.save(session, os.path.join(log_dir, "model.ckpt"), global_step=tf_global_step)
if config['eval_path']:
eval_summary, eval_f1 = model.evaluate(session)
if eval_f1 > max_f1:
max_f1 = eval_f1
best_step = tf_global_step
util.copy_checkpoint(os.path.join(log_dir, "model.ckpt-{}".format(tf_global_step)), os.path.join(log_dir, "model.max.ckpt"))
writer.add_summary(eval_summary, tf_global_step)
writer.add_summary(util.make_summary({"max_eval_f1": max_f1}), tf_global_step)
print("[{}] evaL_f1={:.2f}, max_f1={:.2f} at step {}".format(tf_global_step, eval_f1 * 100, max_f1 * 100, best_step))
else:
util.copy_checkpoint(os.path.join(log_dir, "model.ckpt-{}".format(tf_global_step)),
os.path.join(log_dir, "model.max.ckpt"))
if max_step > 0 and tf_global_step >= max_step:
break