forked from ashawkey/stable-dreamfusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrid.py
206 lines (153 loc) · 8.6 KB
/
grid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import math
import numpy as np
import torch
import torch.nn as nn
from torch.autograd import Function
from torch.autograd.function import once_differentiable
from torch.cuda.amp import custom_bwd, custom_fwd
try:
import _gridencoder as _backend
except ImportError:
from .backend import _backend
_gridtype_to_id = {
'hash': 0,
'tiled': 1,
}
_interp_to_id = {
'linear': 0,
'smoothstep': 1,
}
class _grid_encode(Function):
@staticmethod
@custom_fwd
def forward(ctx, inputs, embeddings, offsets, per_level_scale, base_resolution, calc_grad_inputs=False, gridtype=0, align_corners=False, interpolation=0, max_level=None):
# inputs: [B, D], float in [0, 1]
# embeddings: [sO, C], float
# offsets: [L + 1], int
# RETURN: [B, F], float
inputs = inputs.contiguous()
B, D = inputs.shape # batch size, coord dim
L = offsets.shape[0] - 1 # level
C = embeddings.shape[1] # embedding dim for each level
S = np.log2(per_level_scale) # resolution multiplier at each level, apply log2 for later CUDA exp2f
H = base_resolution # base resolution
max_level = L if max_level is None else max(min(int(math.ceil(max_level * L)), L), 1)
# manually handle autocast (only use half precision embeddings, inputs must be float for enough precision)
# if C % 2 != 0, force float, since half for atomicAdd is very slow.
if torch.is_autocast_enabled() and C % 2 == 0:
embeddings = embeddings.to(torch.half)
# L first, optimize cache for cuda kernel, but needs an extra permute later
outputs = torch.empty(L, B, C, device=inputs.device, dtype=embeddings.dtype)
# zero init if we only calculate partial levels
if max_level < L: outputs.zero_()
if calc_grad_inputs:
dy_dx = torch.empty(B, L * D * C, device=inputs.device, dtype=embeddings.dtype)
if max_level < L: dy_dx.zero_()
else:
dy_dx = None
_backend.grid_encode_forward(inputs, embeddings, offsets, outputs, B, D, C, L, max_level, S, H, dy_dx, gridtype, align_corners, interpolation)
# permute back to [B, L * C]
outputs = outputs.permute(1, 0, 2).reshape(B, L * C)
ctx.save_for_backward(inputs, embeddings, offsets, dy_dx)
ctx.dims = [B, D, C, L, S, H, gridtype, interpolation, max_level]
ctx.align_corners = align_corners
return outputs
@staticmethod
#@once_differentiable
@custom_bwd
def backward(ctx, grad):
inputs, embeddings, offsets, dy_dx = ctx.saved_tensors
B, D, C, L, S, H, gridtype, interpolation, max_level = ctx.dims
align_corners = ctx.align_corners
# grad: [B, L * C] --> [L, B, C]
grad = grad.view(B, L, C).permute(1, 0, 2).contiguous()
grad_embeddings = torch.zeros_like(embeddings)
if dy_dx is not None:
grad_inputs = torch.zeros_like(inputs, dtype=embeddings.dtype)
else:
grad_inputs = None
_backend.grid_encode_backward(grad, inputs, embeddings, offsets, grad_embeddings, B, D, C, L, max_level, S, H, dy_dx, grad_inputs, gridtype, align_corners, interpolation)
if dy_dx is not None:
grad_inputs = grad_inputs.to(inputs.dtype)
return grad_inputs, grad_embeddings, None, None, None, None, None, None, None, None
grid_encode = _grid_encode.apply
class GridEncoder(nn.Module):
def __init__(self, input_dim=3, num_levels=16, level_dim=2, per_level_scale=2, base_resolution=16, log2_hashmap_size=19, desired_resolution=None, gridtype='hash', align_corners=False, interpolation='linear'):
super().__init__()
# the finest resolution desired at the last level, if provided, overridee per_level_scale
if desired_resolution is not None:
per_level_scale = np.exp2(np.log2(desired_resolution / base_resolution) / (num_levels - 1))
self.input_dim = input_dim # coord dims, 2 or 3
self.num_levels = num_levels # num levels, each level multiply resolution by 2
self.level_dim = level_dim # encode channels per level
self.per_level_scale = per_level_scale # multiply resolution by this scale at each level.
self.log2_hashmap_size = log2_hashmap_size
self.base_resolution = base_resolution
self.output_dim = num_levels * level_dim
self.gridtype = gridtype
self.gridtype_id = _gridtype_to_id[gridtype] # "tiled" or "hash"
self.interpolation = interpolation
self.interp_id = _interp_to_id[interpolation] # "linear" or "smoothstep"
self.align_corners = align_corners
# allocate parameters
offsets = []
offset = 0
self.max_params = 2 ** log2_hashmap_size
for i in range(num_levels):
resolution = int(np.ceil(base_resolution * per_level_scale ** i))
params_in_level = min(self.max_params, (resolution) ** input_dim) # limit max number
params_in_level = int(np.ceil(params_in_level / 8) * 8) # make divisible
offsets.append(offset)
offset += params_in_level
offsets.append(offset)
offsets = torch.from_numpy(np.array(offsets, dtype=np.int32))
self.register_buffer('offsets', offsets)
self.n_params = offsets[-1] * level_dim
# parameters
self.embeddings = nn.Parameter(torch.empty(offset, level_dim))
self.reset_parameters()
def reset_parameters(self):
std = 1e-4
self.embeddings.data.uniform_(-std, std)
def __repr__(self):
return f"GridEncoder: input_dim={self.input_dim} num_levels={self.num_levels} level_dim={self.level_dim} resolution={self.base_resolution} -> {int(round(self.base_resolution * self.per_level_scale ** (self.num_levels - 1)))} per_level_scale={self.per_level_scale:.4f} params={tuple(self.embeddings.shape)} gridtype={self.gridtype} align_corners={self.align_corners} interpolation={self.interpolation}"
def forward(self, inputs, bound=1, max_level=None):
# inputs: [..., input_dim], normalized real world positions in [-bound, bound]
# max_level: only calculate first max_level levels (None will use all levels)
# return: [..., num_levels * level_dim]
inputs = (inputs + bound) / (2 * bound) # map to [0, 1]
#print('inputs', inputs.shape, inputs.dtype, inputs.min().item(), inputs.max().item())
prefix_shape = list(inputs.shape[:-1])
inputs = inputs.view(-1, self.input_dim)
outputs = grid_encode(inputs, self.embeddings, self.offsets, self.per_level_scale, self.base_resolution, inputs.requires_grad, self.gridtype_id, self.align_corners, self.interp_id, max_level)
outputs = outputs.view(prefix_shape + [self.output_dim])
#print('outputs', outputs.shape, outputs.dtype, outputs.min().item(), outputs.max().item())
return outputs
# always run in float precision!
@torch.cuda.amp.autocast(enabled=False)
def grad_total_variation(self, weight=1e-7, inputs=None, bound=1, B=1000000):
# inputs: [..., input_dim], float in [-b, b], location to calculate TV loss.
D = self.input_dim
C = self.embeddings.shape[1] # embedding dim for each level
L = self.offsets.shape[0] - 1 # level
S = np.log2(self.per_level_scale) # resolution multiplier at each level, apply log2 for later CUDA exp2f
H = self.base_resolution # base resolution
if inputs is None:
# randomized in [0, 1]
inputs = torch.rand(B, self.input_dim, device=self.embeddings.device)
else:
inputs = (inputs + bound) / (2 * bound) # map to [0, 1]
inputs = inputs.view(-1, self.input_dim)
B = inputs.shape[0]
if self.embeddings.grad is None:
raise ValueError('grad is None, should be called after loss.backward() and before optimizer.step()!')
_backend.grad_total_variation(inputs, self.embeddings, self.embeddings.grad, self.offsets, weight, B, D, C, L, S, H, self.gridtype_id, self.align_corners)
@torch.cuda.amp.autocast(enabled=False)
def grad_weight_decay(self, weight=0.1):
# level-wise meaned weight decay (ref: zip-nerf)
B = self.embeddings.shape[0] # size of embedding
C = self.embeddings.shape[1] # embedding dim for each level
L = self.offsets.shape[0] - 1 # level
if self.embeddings.grad is None:
raise ValueError('grad is None, should be called after loss.backward() and before optimizer.step()!')
_backend.grad_weight_decay(self.embeddings, self.embeddings.grad, self.offsets, weight, B, C, L)