forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreceptive_field.py
483 lines (420 loc) · 18.8 KB
/
receptive_field.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
# -*- coding: utf-8 -*-
# Authors: Chris Holdgraf <[email protected]>
# Eric Larson <[email protected]>
# License: BSD (3-clause)
import numbers
import numpy as np
from scipy import linalg
from .base import get_coef, BaseEstimator, _check_estimator
from .time_delaying_ridge import TimeDelayingRidge
from ..fixes import is_regressor
from ..utils import _validate_type
class ReceptiveField(BaseEstimator):
"""Fit a receptive field model.
This allows you to fit an encoding model (stimulus to brain) or a decoding
model (brain to stimulus) using time-lagged input features (for example, a
spectro- or spatio-temporal receptive field, or STRF).
Parameters
----------
tmin : float
The starting lag, in seconds (or samples if ``sfreq`` == 1).
tmax : float
The ending lag, in seconds (or samples if ``sfreq`` == 1).
Must be >= tmin.
sfreq : float
The sampling frequency used to convert times into samples.
feature_names : array, shape (n_features,) | None
Names for input features to the model. If None, feature names will
be auto-generated from the shape of input data after running `fit`.
estimator : instance of sklearn.base.BaseEstimator | float | None
The model used in fitting inputs and outputs. This can be any
scikit-learn-style model that contains a fit and predict method. If a
float is passed, it will be interpreted as the `alpha` parameter
to be passed to a Ridge regression model. If `None`, then a Ridge
regression model with an alpha of 0 will be used.
fit_intercept : bool | None
If True (default), the sample mean is removed before fitting.
If ``estimator`` is a :class:`sklearn.base.BaseEstimator`,
this must be None or match ``estimator.fit_intercept``.
scoring : ['r2', 'corrcoef']
Defines how predictions will be scored. Currently must be one of
'r2' (coefficient of determination) or 'corrcoef' (the correlation
coefficient).
patterns : bool
If True, inverse coefficients will be computed upon fitting using the
covariance matrix of the inputs, and the cross-covariance of the
inputs/outputs, according to [5]_. Defaults to False.
Attributes
----------
coef_ : array, shape ([n_outputs, ]n_features, n_delays)
The coefficients from the model fit, reshaped for easy visualization.
During :meth:`mne.decoding.ReceptiveField.fit`, if ``y`` has one
dimension (time), the ``n_outputs`` dimension here is omitted.
patterns_ : array, shape ([n_outputs, ]n_features, n_delays)
If fit, the inverted coefficients from the model.
delays_ : array, shape (n_delays,), dtype int
The delays used to fit the model, in indices. To return the delays
in seconds, use ``self.delays_ / self.sfreq``
valid_samples_ : slice
The rows to keep during model fitting after removing rows with
missing values due to time delaying. This can be used to get an
output equivalent to using :func:`numpy.convolve` or
:func:`numpy.correlate` with ``mode='valid'``.
See Also
--------
mne.decoding.TimeDelayingRidge
Notes
-----
For a causal system, the encoding model will have significant
non-zero values only at positive lags. In other words, lags point
backward in time relative to the input, so positive lags correspond
to previous input time samples, while negative lags correspond to
future input time samples.
References
----------
.. [1] Theunissen, F. E. et al. Estimating spatio-temporal receptive
fields of auditory and visual neurons from their responses to
natural stimuli. Network 12, 289-316 (2001).
.. [2] Willmore, B. & Smyth, D. Methods for first-order kernel
estimation: simple-cell receptive fields from responses to
natural scenes. Network 14, 553-77 (2003).
.. [3] Crosse, M. J., Di Liberto, G. M., Bednar, A. & Lalor, E. C. (2016).
The Multivariate Temporal Response Function (mTRF) Toolbox:
A MATLAB Toolbox for Relating Neural Signals to Continuous Stimuli.
Frontiers in Human Neuroscience 10, 604.
doi:10.3389/fnhum.2016.00604
.. [4] Holdgraf, C. R. et al. Rapid tuning shifts in human auditory cortex
enhance speech intelligibility. Nature Communications,
7, 13654 (2016). doi:10.1038/ncomms13654
.. [5] Haufe, S., Meinecke, F., Goergen, K., Daehne, S., Haynes, J.-D.,
Blankertz, B., & Biessmann, F. (2014). On the interpretation of
weight vectors of linear models in multivariate neuroimaging.
NeuroImage, 87, 96-110. doi:10.1016/j.neuroimage.2013.10.067
"""
def __init__(self, tmin, tmax, sfreq, feature_names=None, estimator=None,
fit_intercept=None, scoring='r2',
patterns=False): # noqa: D102
self.feature_names = feature_names
self.sfreq = float(sfreq)
self.tmin = tmin
self.tmax = tmax
self.estimator = 0. if estimator is None else estimator
self.fit_intercept = fit_intercept
self.scoring = scoring
self.patterns = patterns
def __repr__(self): # noqa: D105
s = "tmin, tmax : (%.3f, %.3f), " % (self.tmin, self.tmax)
estimator = self.estimator
if not isinstance(estimator, str):
estimator = type(self.estimator)
s += "estimator : %s, " % (estimator,)
if hasattr(self, 'coef_'):
feats = self.feature_names
if len(feats) == 1:
s += "feature: %s, " % feats[0]
else:
s += "features : [%s, ..., %s], " % (feats[0], feats[-1])
s += "fit: True"
else:
s += "fit: False"
if hasattr(self, 'scores_'):
s += "scored (%s)" % self.scoring
return "<ReceptiveField | %s>" % s
def _delay_and_reshape(self, X, y=None):
"""Delay and reshape the variables."""
if not isinstance(self.estimator_, TimeDelayingRidge):
# X is now shape (n_times, n_epochs, n_feats, n_delays)
X = _delay_time_series(X, self.tmin, self.tmax, self.sfreq,
fill_mean=self.fit_intercept)
X = _reshape_for_est(X)
# Concat times + epochs
if y is not None:
y = y.reshape(-1, y.shape[-1], order='F')
return X, y
def fit(self, X, y):
"""Fit a receptive field model.
Parameters
----------
X : array, shape (n_times[, n_epochs], n_features)
The input features for the model.
y : array, shape (n_times[, n_epochs][, n_outputs])
The output features for the model.
Returns
-------
self : instance
The instance so you can chain operations.
"""
if self.scoring not in _SCORERS.keys():
raise ValueError('scoring must be one of %s, got'
'%s ' % (sorted(_SCORERS.keys()), self.scoring))
from sklearn.base import clone
X, y, _, self._y_dim = self._check_dimensions(X, y)
if self.tmin > self.tmax:
raise ValueError('tmin (%s) must be at most tmax (%s)'
% (self.tmin, self.tmax))
# Initialize delays
self.delays_ = _times_to_delays(self.tmin, self.tmax, self.sfreq)
# Define the slice that we should use in the middle
self.valid_samples_ = _delays_to_slice(self.delays_)
if isinstance(self.estimator, numbers.Real):
if self.fit_intercept is None:
self.fit_intercept = True
estimator = TimeDelayingRidge(self.tmin, self.tmax, self.sfreq,
alpha=self.estimator,
fit_intercept=self.fit_intercept)
elif is_regressor(self.estimator):
estimator = clone(self.estimator)
if self.fit_intercept is not None and \
estimator.fit_intercept != self.fit_intercept:
raise ValueError(
'Estimator fit_intercept (%s) != initialization '
'fit_intercept (%s), initialize ReceptiveField with the '
'same fit_intercept value or use fit_intercept=None'
% (estimator.fit_intercept, self.fit_itercept))
self.fit_intercept = estimator.fit_intercept
else:
raise ValueError('`estimator` must be a float or an instance'
' of `BaseEstimator`,'
' got type %s.' % type(self.estimator))
self.estimator_ = estimator
del estimator
_check_estimator(self.estimator_)
# Create input features
n_times, n_epochs, n_feats = X.shape
n_outputs = y.shape[-1]
n_delays = len(self.delays_)
# Update feature names if we have none
if self.feature_names is None:
self.feature_names = ['feature_%s' % ii for ii in range(n_feats)]
if len(self.feature_names) != n_feats:
raise ValueError('n_features in X does not match feature names '
'(%s != %s)' % (n_feats, len(self.feature_names)))
# Create input features
X, y = self._delay_and_reshape(X, y)
self.estimator_.fit(X, y)
coef = get_coef(self.estimator_, 'coef_') # (n_targets, n_features)
shape = [n_feats, n_delays]
if self._y_dim > 1:
shape.insert(0, -1)
self.coef_ = coef.reshape(shape)
# Inverse-transform model weights
if self.patterns:
if isinstance(self.estimator_, TimeDelayingRidge):
cov_ = self.estimator_.cov_ / float(n_times * n_epochs - 1)
y = y.reshape(-1, y.shape[-1], order='F')
else:
X = X - X.mean(0, keepdims=True)
cov_ = np.cov(X.T)
del X
# Inverse output covariance
if y.ndim == 2 and y.shape[1] != 1:
y = y - y.mean(0, keepdims=True)
inv_Y = linalg.pinv(np.cov(y.T))
else:
inv_Y = 1. / float(n_times * n_epochs - 1)
del y
# Inverse coef according to Haufe's method
# patterns has shape (n_feats * n_delays, n_outputs)
coef = np.reshape(self.coef_, (n_feats * n_delays, n_outputs))
patterns = cov_.dot(coef.dot(inv_Y))
self.patterns_ = patterns.reshape(shape)
return self
def predict(self, X):
"""Generate predictions with a receptive field.
Parameters
----------
X : array, shape (n_times[, n_epochs], n_channels)
The input features for the model.
Returns
-------
y_pred : array, shape (n_times[, n_epochs][, n_outputs])
The output predictions. "Note that valid samples (those
unaffected by edge artifacts during the time delaying step) can
be obtained using ``y_pred[rf.valid_samples_]``.
"""
if not hasattr(self, 'delays_'):
raise ValueError('Estimator has not been fit yet.')
X, _, X_dim = self._check_dimensions(X, None, predict=True)[:3]
del _
# convert to sklearn and back
pred_shape = X.shape[:-1]
if self._y_dim > 1:
pred_shape = pred_shape + (self.coef_.shape[0],)
X, _ = self._delay_and_reshape(X)
y_pred = self.estimator_.predict(X)
y_pred = y_pred.reshape(pred_shape, order='F')
shape = list(y_pred.shape)
if X_dim <= 2:
shape.pop(1) # epochs
extra = 0
else:
extra = 1
shape = shape[:self._y_dim + extra]
y_pred.shape = shape
return y_pred
def score(self, X, y):
"""Score predictions generated with a receptive field.
This calls ``self.predict``, then masks the output of this
and ``y` with ``self.mask_prediction_``. Finally, it passes
this to a :mod:`sklearn.metrics` scorer.
Parameters
----------
X : array, shape (n_times[, n_epochs], n_channels)
The input features for the model.
y : array, shape (n_times[, n_epochs][, n_outputs])
Used for scikit-learn compatibility.
Returns
-------
scores : list of float, shape (n_outputs,)
The scores estimated by the model for each output (e.g. mean
R2 of ``predict(X)``).
"""
# Create our scoring object
scorer_ = _SCORERS[self.scoring]
# Generate predictions, then reshape so we can mask time
X, y = self._check_dimensions(X, y, predict=True)[:2]
n_times, n_epochs, n_outputs = y.shape
y_pred = self.predict(X)
y_pred = y_pred[self.valid_samples_]
y = y[self.valid_samples_]
# Re-vectorize and call scorer
y = y.reshape([-1, n_outputs], order='F')
y_pred = y_pred.reshape([-1, n_outputs], order='F')
assert y.shape == y_pred.shape
scores = scorer_(y, y_pred, multioutput='raw_values')
return scores
def _check_dimensions(self, X, y, predict=False):
X_dim = X.ndim
y_dim = y.ndim if y is not None else 0
if X_dim == 2:
# Ensure we have a 3D input by adding singleton epochs dimension
X = X[:, np.newaxis, :]
if y is not None:
if y_dim == 1:
y = y[:, np.newaxis, np.newaxis] # epochs, outputs
elif y_dim == 2:
y = y[:, np.newaxis, :] # epochs
else:
raise ValueError('y must be shape (n_times[, n_epochs]'
'[,n_outputs], got %s' % (y.shape,))
elif X.ndim == 3:
if y is not None:
if y.ndim == 2:
y = y[:, :, np.newaxis] # Add an outputs dim
elif y.ndim != 3:
raise ValueError('If X has 3 dimensions, '
'y must have 2 or 3 dimensions')
else:
raise ValueError('X must be shape (n_times[, n_epochs],'
' n_features), got %s' % (X.shape,))
if y is not None:
if X.shape[0] != y.shape[0]:
raise ValueError('X any y do not have the same n_times\n'
'%s != %s' % (X.shape[0], y.shape[0]))
if X.shape[1] != y.shape[1]:
raise ValueError('X any y do not have the same n_epochs\n'
'%s != %s' % (X.shape[1], y.shape[1]))
if predict and y.shape[-1] != len(self.estimator_.coef_):
raise ValueError('Number of outputs does not match'
' estimator coefficients dimensions')
return X, y, X_dim, y_dim
def _delay_time_series(X, tmin, tmax, sfreq, fill_mean=False):
"""Return a time-lagged input time series.
Parameters
----------
X : array, shape (n_times[, n_epochs], n_features)
The time series to delay. Must be 2D or 3D.
tmin : int | float
The starting lag.
tmax : int | float
The ending lag.
Must be >= tmin.
sfreq : int | float
The sampling frequency of the series. Defaults to 1.0.
fill_mean : bool
If True, the fill value will be the mean along the time dimension
of the feature, and each cropped and delayed segment of data
will be shifted to have the same mean value (ensuring that mean
subtraction works properly). If False, the fill value will be zero.
Returns
-------
delayed : array, shape(n_times[, n_epochs][, n_features], n_delays)
The delayed data. It has the same shape as X, with an extra dimension
appended to the end.
Examples
--------
>>> tmin, tmax = -0.1, 0.2
>>> sfreq = 10.
>>> x = np.arange(1, 6)
>>> x_del = _delay_time_series(x, tmin, tmax, sfreq)
>>> print(x_del) # doctest:+SKIP
[[2. 1. 0. 0.]
[3. 2. 1. 0.]
[4. 3. 2. 1.]
[5. 4. 3. 2.]
[0. 5. 4. 3.]]
"""
_check_delayer_params(tmin, tmax, sfreq)
delays = _times_to_delays(tmin, tmax, sfreq)
# Iterate through indices and append
delayed = np.zeros(X.shape + (len(delays),))
if fill_mean:
mean_value = X.mean(axis=0)
if X.ndim == 3:
mean_value = np.mean(mean_value, axis=0)
delayed[:] = mean_value[:, np.newaxis]
for ii, ix_delay in enumerate(delays):
# Create zeros to populate w/ delays
if ix_delay < 0:
out = delayed[:ix_delay, ..., ii]
use_X = X[-ix_delay:]
elif ix_delay > 0:
out = delayed[ix_delay:, ..., ii]
use_X = X[:-ix_delay]
else: # == 0
out = delayed[..., ii]
use_X = X
out[:] = use_X
if fill_mean:
out[:] += (mean_value - use_X.mean(axis=0))
return delayed
def _times_to_delays(tmin, tmax, sfreq):
"""Convert a tmin/tmax in seconds to delays."""
# Convert seconds to samples
delays = np.arange(int(np.round(tmin * sfreq)),
int(np.round(tmax * sfreq) + 1))
return delays
def _delays_to_slice(delays):
"""Find the slice to be taken in order to remove missing values."""
# Negative values == cut off rows at the end
min_delay = None if delays[-1] <= 0 else delays[-1]
# Positive values == cut off rows at the end
max_delay = None if delays[0] >= 0 else delays[0]
return slice(min_delay, max_delay)
def _check_delayer_params(tmin, tmax, sfreq):
"""Check delayer input parameters. For future custom delay support."""
_validate_type(sfreq, 'numeric', '`sfreq`')
for tlim in (tmin, tmax):
_validate_type(tlim, 'numeric', 'tmin/tmax')
if not tmin <= tmax:
raise ValueError('tmin must be <= tmax')
def _reshape_for_est(X_del):
"""Convert X_del to a sklearn-compatible shape."""
n_times, n_epochs, n_feats, n_delays = X_del.shape
X_del = X_del.reshape(n_times, n_epochs, -1) # concatenate feats
X_del = X_del.reshape(n_times * n_epochs, -1, order='F')
return X_del
# Create a correlation scikit-learn-style scorer
def _corr_score(y_true, y, multioutput=None):
from scipy.stats import pearsonr
assert multioutput == 'raw_values'
for this_y in (y_true, y):
if this_y.ndim != 2:
raise ValueError('inputs must shape (samples, outputs), got %s'
% (this_y.shape,))
return np.array([pearsonr(y_true[:, ii], y[:, ii])[0]
for ii in range(y.shape[-1])])
def _r2_score(y_true, y, multioutput=None):
from sklearn.metrics import r2_score
return r2_score(y_true, y, multioutput=multioutput)
_SCORERS = {'r2': _r2_score, 'corrcoef': _corr_score}