forked from jax-ml/jax
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgpu_prng.py
108 lines (90 loc) · 3.51 KB
/
gpu_prng.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# Copyright 2019 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from functools import partial
import importlib
import itertools
import jaxlib.mlir.ir as ir
from jaxlib import xla_client
from .hlo_helpers import custom_call
for cuda_module_name in [".cuda", "jax_cuda12_plugin"]:
try:
_cuda_prng = importlib.import_module(
f"{cuda_module_name}._prng", package="jaxlib"
)
except ImportError:
_cuda_prng = None
else:
break
if _cuda_prng:
for _name, _value in _cuda_prng.registrations().items():
# TODO(b/338022728): remove after 6 months, always api_version=1
api_version = 1 if "_ffi" in _name else 0
xla_client.register_custom_call_target(_name, _value, platform="CUDA",
api_version=api_version)
for rocm_module_name in [".rocm", "jax_rocm60_plugin"]:
try:
_hip_prng = importlib.import_module(
f"{rocm_module_name}._prng", package="jaxlib"
)
except ImportError:
_hip_prng = None
else:
break
if _hip_prng:
for _name, _value in _hip_prng.registrations().items():
# TODO(b/338022728): remove after 6 months, always api_version=1
api_version = 1 if "_ffi" in _name else 0
xla_client.register_custom_call_target(_name, _value, platform="ROCM",
api_version=api_version)
def _threefry2x32_lowering(prng, platform: str, keys, data,
length: int | ir.Value | None = None,
output_shape: ir.Value | None = None,
forward_compatibility_mode: bool = False):
"""ThreeFry2x32 kernel for GPU.
In presence of dynamic shapes, `length` is an `ir.Value` and `output_shape`
is a 1D tensor describing the shape of the two outputs.
"""
del forward_compatibility_mode
assert len(keys) == 2, keys
assert len(data) == 2, data
assert (ir.RankedTensorType(keys[0].type).element_type ==
ir.IntegerType.get_unsigned(32)), keys[0].type
typ = keys[0].type
dims = ir.RankedTensorType(typ).shape
for x in itertools.chain(keys, data):
assert x.type == typ, (x.type, typ)
ndims = len(dims)
layout = tuple(range(ndims - 1, -1, -1))
operand_layouts = [layout] * 4
operands = [keys[0], keys[1], data[0], data[1]]
opaque = {} # Use if not forward_compatibility_mode to trigger the FFI (v4).
if isinstance(length, int):
result_shapes = None
else:
assert output_shape is not None
# We also need to pass separately the shapes of the outputs.
result_shapes = [output_shape, output_shape]
custom_call_target = f"{platform}_threefry2x32_ffi"
return custom_call(
custom_call_target,
api_version=4,
result_types=[typ, typ],
operands=operands,
backend_config=opaque,
operand_layouts=operand_layouts,
result_layouts=[layout] * 2,
result_shapes=result_shapes).results
cuda_threefry2x32 = partial(_threefry2x32_lowering, _cuda_prng, "cu")
rocm_threefry2x32 = partial(_threefry2x32_lowering, _hip_prng, "hip")