forked from iff-gsc/Tornado
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrefftz5.m
147 lines (111 loc) · 4.3 KB
/
trefftz5.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
function [results]=trefftz(results,state,geo,lattice,ref)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Trefftz: Subsidiary function for TORNADO
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Computes and plots constituents of Trefftz plane analysis drag.
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Author: Tomas Melin, University of Bristol
% Aeronautical Engineering Department
% copyright 2007
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% CONTEXT: Subsidary function for TORNADO
% Called by: main->postproc->resultplot
% Calls: MATLAB std fcns
%
%
% Loads: none
% Saves: none
% Input: results,state,geo,lattice,ref
% Output:results
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%Rudimentary trefftz plane analysis for Tornado
%
% It works as is, but users may want to experiment by
% Changing the panelling, "npan", and the width of the integration area
% "span_multiplier". This is done by hardcoding this file.
%
% The code takes the y and z position of all trailing edge vorticies
% both the incoming and outgoing of each panel horseshoe, then employs the
% Muncks stagger theoreme to compute the induced velocities in the trefftz
% plane (infinitely far downstream). From the velocities comes energy rate
% and thus Drag. The drag is then numerically integrated throughout the
% trefftz plane.
%
% The size of the treftz plane, i.e. the integration limits, are
% automagically adapted to the reference span of the AC. -Should the span
% be much smaller than the height, the code will fail. Also, is is a bit
% sensitive to the size of the incremental steps. Especially if the middle
% of a dx x dy square comes very close to a vortex line.
%
% Notably, there is a difference between the vector analysis drag, and the
% trefftz plane drag. I don't know why yet, so if you know, please do tell.
%tic
npan=56; %Number of panels in treftz plane
[a1 a2 a3]=size(lattice.VORTEX);
arrowsize=5;
for i=1:a1
vpos(i,1,1)=lattice.VORTEX(i,2,2); %y pos incoming
vpos(i,2,1)=lattice.VORTEX(i,2,3); %z pos
vpos(i,1,2)=lattice.VORTEX(i,7,2); %y pos outgoing
vpos(i,2,2)=lattice.VORTEX(i,7,3); %z pos
end
span_multiplier=1;
zmax=span_multiplier*ref.b_ref;
ymax=span_multiplier*ref.b_ref;
dl=2*zmax/npan;
%Numerical drag iteration
for a=0:npan-1 % Rows
for b=0:npan-1 % Cols
V=0;
%for c=1:a1 % Per vortex
%ingoing
ry=(ymax-dl/2)-a*dl-vpos(:,1,1);
rz=(zmax-dl/2)-b*dl-vpos(:,2,1);
r=[rz, -ry];
lr=sqrt(sum(r.^2,2));
er=r(:,1)./lr;
er(:,2)=r(:,2)./lr;
v1=results.gamma(:,1)./(2*pi*lr).*er(:,1);
v1(:,2)=results.gamma(:,1)./(2*pi*lr).*er(:,2);
%outgoing
ry=(ymax-dl/2)-a*dl-vpos(:,1,2);
rz=(zmax-dl/2)-b*dl-vpos(:,2,2);
r=[rz, -ry];
lr=sqrt(sum(r.^2,2));
er=r(:,1)./lr;
er(:,2)=r(:,2)./lr;
v2=-results.gamma(:,1)./(2*pi*lr).*er(:,1);
v2(:,2)=-results.gamma(:,1)./(2*pi*lr).*er(:,2);
V=sum([v1;v2]);
%end
x(a+1,b+1)=(ymax-dl/2)-a*dl;
y(a+1,b+1)=(zmax-dl/2)-b*dl;
VVEC(a+1,b+1,:)=V;
VTOT(a+1,b+1)=sqrt(sum(V.^2));
D(a+1,b+1)=0.5*state.rho*(sum(V.^2))*dl^2;
end
end
results.treffts.x=x;
results.treffts.y=y;
results.treffts.D=D;
results.treffts.VTOT=VTOT;
results.treffts.VVEC=VVEC;
Trefftz_drag_Coeff=sum(sum(D))/(0.5*state.rho*state.AS^2*ref.S_ref);
results.Trefftz_drag_Coeff=Trefftz_drag_Coeff;
%return
%Moving these to resultplot
figure(23)
surf(x,y,D)
xlabel('y coordinate, [m]')
ylabel('z coordinate, [m]')
zlabel('Distributed drag contrubution, [N]')
title('Treffz plane drag contribution field.')
figure(22)
contour(x,y,VTOT,20), hold on
quiver(x,y,VVEC(:,:,1),VVEC(:,:,2),arrowsize)
xlabel('y coordinate, [m]')
ylabel('z coordinate, [m]')
title('Treffz plane velocity vector field.')
% toc