forked from PaddlePaddle/PaddleSlim
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_fsp_loss.py
68 lines (62 loc) · 2.78 KB
/
test_fsp_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
sys.path.append("../")
import unittest
import paddle.fluid as fluid
from paddleslim.dist import merge, fsp_loss
from layers import conv_bn_layer
class TestFSPLoss(unittest.TestCase):
def test_fsp_loss(self):
student_main = fluid.Program()
student_startup = fluid.Program()
with fluid.program_guard(student_main, student_startup):
input = fluid.data(name="image", shape=[None, 3, 224, 224])
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
student_predict = conv1 + conv2
teacher_main = fluid.Program()
teacher_startup = fluid.Program()
with fluid.program_guard(teacher_main, teacher_startup):
input = fluid.data(name="image", shape=[None, 3, 224, 224])
conv1 = conv_bn_layer(input, 8, 3, "conv1")
conv2 = conv_bn_layer(conv1, 8, 3, "conv2")
sum1 = conv1 + conv2
conv3 = conv_bn_layer(sum1, 8, 3, "conv3")
conv4 = conv_bn_layer(conv3, 8, 3, "conv4")
sum2 = conv4 + sum1
conv5 = conv_bn_layer(sum2, 8, 3, "conv5")
teacher_predict = conv_bn_layer(conv5, 8, 3, "conv6")
place = fluid.CPUPlace()
data_name_map = {'image': 'image'}
merge(teacher_main, student_main, data_name_map, place)
merged_ops = []
for block in student_main.blocks:
for op in block.ops:
merged_ops.append(op.type)
with fluid.program_guard(student_main):
distill_loss = fsp_loss('teacher_conv5_bn_output.tmp_2',
'teacher_conv6_bn_output.tmp_2',
'conv1_bn_output.tmp_2',
'conv2_bn_output.tmp_2', student_main)
loss_ops = []
for block in student_main.blocks:
for op in block.ops:
loss_ops.append(op.type)
self.assertTrue(set(merged_ops).difference(set(loss_ops)) == set())
self.assertTrue(
set(loss_ops).difference(set(merged_ops)) ==
{'elementwise_sub', 'reduce_mean', 'square', 'fsp'})
if __name__ == '__main__':
unittest.main()