forked from openmc-dev/openmc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcell.cpp
1310 lines (1146 loc) · 39.7 KB
/
cell.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#include "openmc/cell.h"
#include <algorithm>
#include <cctype>
#include <cmath>
#include <iterator>
#include <set>
#include <sstream>
#include <string>
#include <fmt/core.h>
#include <gsl/gsl>
#include "openmc/capi.h"
#include "openmc/constants.h"
#include "openmc/dagmc.h"
#include "openmc/error.h"
#include "openmc/geometry.h"
#include "openmc/hdf5_interface.h"
#include "openmc/lattice.h"
#include "openmc/material.h"
#include "openmc/nuclide.h"
#include "openmc/settings.h"
#include "openmc/surface.h"
#include "openmc/xml_interface.h"
namespace openmc {
//==============================================================================
// Global variables
//==============================================================================
namespace model {
std::unordered_map<int32_t, int32_t> cell_map;
vector<unique_ptr<Cell>> cells;
std::unordered_map<int32_t, int32_t> universe_map;
vector<unique_ptr<Universe>> universes;
} // namespace model
//==============================================================================
//! Convert region specification string to integer tokens.
//!
//! The characters (, ), |, and ~ count as separate tokens since they represent
//! operators.
//==============================================================================
vector<int32_t> tokenize(const std::string region_spec)
{
// Check for an empty region_spec first.
vector<int32_t> tokens;
if (region_spec.empty()) {
return tokens;
}
// Parse all halfspaces and operators except for intersection (whitespace).
for (int i = 0; i < region_spec.size(); ) {
if (region_spec[i] == '(') {
tokens.push_back(OP_LEFT_PAREN);
i++;
} else if (region_spec[i] == ')') {
tokens.push_back(OP_RIGHT_PAREN);
i++;
} else if (region_spec[i] == '|') {
tokens.push_back(OP_UNION);
i++;
} else if (region_spec[i] == '~') {
tokens.push_back(OP_COMPLEMENT);
i++;
} else if (region_spec[i] == '-' || region_spec[i] == '+'
|| std::isdigit(region_spec[i])) {
// This is the start of a halfspace specification. Iterate j until we
// find the end, then push-back everything between i and j.
int j = i + 1;
while (j < region_spec.size() && std::isdigit(region_spec[j])) {j++;}
tokens.push_back(std::stoi(region_spec.substr(i, j-i)));
i = j;
} else if (std::isspace(region_spec[i])) {
i++;
} else {
auto err_msg = fmt::format(
"Region specification contains invalid character, \"{}\"", region_spec[i]);
fatal_error(err_msg);
}
}
// Add in intersection operators where a missing operator is needed.
int i = 0;
while (i < tokens.size()-1) {
bool left_compat {(tokens[i] < OP_UNION) || (tokens[i] == OP_RIGHT_PAREN)};
bool right_compat {(tokens[i+1] < OP_UNION)
|| (tokens[i+1] == OP_LEFT_PAREN)
|| (tokens[i+1] == OP_COMPLEMENT)};
if (left_compat && right_compat) {
tokens.insert(tokens.begin()+i+1, OP_INTERSECTION);
}
i++;
}
return tokens;
}
//==============================================================================
//! Convert infix region specification to Reverse Polish Notation (RPN)
//!
//! This function uses the shunting-yard algorithm.
//==============================================================================
vector<int32_t> generate_rpn(int32_t cell_id, vector<int32_t> infix)
{
vector<int32_t> rpn;
vector<int32_t> stack;
for (int32_t token : infix) {
if (token < OP_UNION) {
// If token is not an operator, add it to output
rpn.push_back(token);
} else if (token < OP_RIGHT_PAREN) {
// Regular operators union, intersection, complement
while (stack.size() > 0) {
int32_t op = stack.back();
if (op < OP_RIGHT_PAREN &&
((token == OP_COMPLEMENT && token < op) ||
(token != OP_COMPLEMENT && token <= op))) {
// While there is an operator, op, on top of the stack, if the token
// is left-associative and its precedence is less than or equal to
// that of op or if the token is right-associative and its precedence
// is less than that of op, move op to the output queue and push the
// token on to the stack. Note that only complement is
// right-associative.
rpn.push_back(op);
stack.pop_back();
} else {
break;
}
}
stack.push_back(token);
} else if (token == OP_LEFT_PAREN) {
// If the token is a left parenthesis, push it onto the stack
stack.push_back(token);
} else {
// If the token is a right parenthesis, move operators from the stack to
// the output queue until reaching the left parenthesis.
for (auto it = stack.rbegin(); *it != OP_LEFT_PAREN; it++) {
// If we run out of operators without finding a left parenthesis, it
// means there are mismatched parentheses.
if (it == stack.rend()) {
fatal_error(fmt::format(
"Mismatched parentheses in region specification for cell {}", cell_id));
}
rpn.push_back(stack.back());
stack.pop_back();
}
// Pop the left parenthesis.
stack.pop_back();
}
}
while (stack.size() > 0) {
int32_t op = stack.back();
// If the operator is a parenthesis it is mismatched.
if (op >= OP_RIGHT_PAREN) {
fatal_error(fmt::format(
"Mismatched parentheses in region specification for cell {}", cell_id));
}
rpn.push_back(stack.back());
stack.pop_back();
}
return rpn;
}
//==============================================================================
// Universe implementation
//==============================================================================
void
Universe::to_hdf5(hid_t universes_group) const
{
// Create a group for this universe.
auto group = create_group(universes_group, fmt::format("universe {}", id_));
// Write the contained cells.
if (cells_.size() > 0) {
vector<int32_t> cell_ids;
for (auto i_cell : cells_) cell_ids.push_back(model::cells[i_cell]->id_);
write_dataset(group, "cells", cell_ids);
}
close_group(group);
}
BoundingBox Universe::bounding_box() const {
BoundingBox bbox = {INFTY, -INFTY, INFTY, -INFTY, INFTY, -INFTY};
if (cells_.size() == 0) {
return {};
} else {
for (const auto& cell : cells_) {
auto& c = model::cells[cell];
bbox |= c->bounding_box();
}
}
return bbox;
}
//==============================================================================
// Cell implementation
//==============================================================================
double
Cell::temperature(int32_t instance) const
{
if (sqrtkT_.size() < 1) {
throw std::runtime_error{"Cell temperature has not yet been set."};
}
if (instance >= 0) {
double sqrtkT = sqrtkT_.size() == 1 ?
sqrtkT_.at(0) :
sqrtkT_.at(instance);
return sqrtkT * sqrtkT / K_BOLTZMANN;
} else {
return sqrtkT_[0] * sqrtkT_[0] / K_BOLTZMANN;
}
}
void
Cell::set_temperature(double T, int32_t instance, bool set_contained)
{
if (settings::temperature_method == TemperatureMethod::INTERPOLATION) {
if (T < data::temperature_min) {
throw std::runtime_error{"Temperature is below minimum temperature at "
"which data is available."};
} else if (T > data::temperature_max) {
throw std::runtime_error{"Temperature is above maximum temperature at "
"which data is available."};
}
}
if (type_ == Fill::MATERIAL) {
if (instance >= 0) {
// If temperature vector is not big enough, resize it first
if (sqrtkT_.size() != n_instances_) sqrtkT_.resize(n_instances_, sqrtkT_[0]);
// Set temperature for the corresponding instance
sqrtkT_.at(instance) = std::sqrt(K_BOLTZMANN * T);
} else {
// Set temperature for all instances
for (auto& T_ : sqrtkT_) {
T_ = std::sqrt(K_BOLTZMANN * T);
}
}
} else {
if (!set_contained) {
throw std::runtime_error{fmt::format("Attempted to set the temperature of cell {} "
"which is not filled by a material.", id_)};
}
auto contained_cells = this->get_contained_cells();
for (const auto& entry : contained_cells) {
auto& cell = model::cells[entry.first];
Expects(cell->type_ == Fill::MATERIAL);
auto& instances = entry.second;
for (auto instance : instances) {
cell->set_temperature(T, instance);
}
}
}
}
//==============================================================================
// CSGCell implementation
//==============================================================================
CSGCell::CSGCell() {} // empty constructor
CSGCell::CSGCell(pugi::xml_node cell_node)
{
if (check_for_node(cell_node, "id")) {
id_ = std::stoi(get_node_value(cell_node, "id"));
} else {
fatal_error("Must specify id of cell in geometry XML file.");
}
if (check_for_node(cell_node, "name")) {
name_ = get_node_value(cell_node, "name");
}
if (check_for_node(cell_node, "universe")) {
universe_ = std::stoi(get_node_value(cell_node, "universe"));
} else {
universe_ = 0;
}
// Make sure that either material or fill was specified, but not both.
bool fill_present = check_for_node(cell_node, "fill");
bool material_present = check_for_node(cell_node, "material");
if (!(fill_present || material_present)) {
fatal_error(fmt::format(
"Neither material nor fill was specified for cell {}", id_));
}
if (fill_present && material_present) {
fatal_error(fmt::format("Cell {} has both a material and a fill specified; "
"only one can be specified per cell", id_));
}
if (fill_present) {
fill_ = std::stoi(get_node_value(cell_node, "fill"));
if (fill_ == universe_) {
fatal_error(fmt::format("Cell {} is filled with the same universe that"
"it is contained in.", id_));
}
} else {
fill_ = C_NONE;
}
// Read the material element. There can be zero materials (filled with a
// universe), more than one material (distribmats), and some materials may
// be "void".
if (material_present) {
vector<std::string> mats {
get_node_array<std::string>(cell_node, "material", true)};
if (mats.size() > 0) {
material_.reserve(mats.size());
for (std::string mat : mats) {
if (mat.compare("void") == 0) {
material_.push_back(MATERIAL_VOID);
} else {
material_.push_back(std::stoi(mat));
}
}
} else {
fatal_error(fmt::format("An empty material element was specified for cell {}",
id_));
}
}
// Read the temperature element which may be distributed like materials.
if (check_for_node(cell_node, "temperature")) {
sqrtkT_ = get_node_array<double>(cell_node, "temperature");
sqrtkT_.shrink_to_fit();
// Make sure this is a material-filled cell.
if (material_.size() == 0) {
fatal_error(fmt::format(
"Cell {} was specified with a temperature but no material. Temperature"
"specification is only valid for cells filled with a material.", id_));
}
// Make sure all temperatures are non-negative.
for (auto T : sqrtkT_) {
if (T < 0) {
fatal_error(fmt::format(
"Cell {} was specified with a negative temperature", id_));
}
}
// Convert to sqrt(k*T).
for (auto& T : sqrtkT_) {
T = std::sqrt(K_BOLTZMANN * T);
}
}
// Read the region specification.
std::string region_spec;
if (check_for_node(cell_node, "region")) {
region_spec = get_node_value(cell_node, "region");
}
// Get a tokenized representation of the region specification.
region_ = tokenize(region_spec);
region_.shrink_to_fit();
// Convert user IDs to surface indices.
for (auto& r : region_) {
if (r < OP_UNION) {
const auto& it {model::surface_map.find(abs(r))};
if (it == model::surface_map.end()) {
throw std::runtime_error{"Invalid surface ID " + std::to_string(abs(r))
+ " specified in region for cell " + std::to_string(id_) + "."};
}
r = (r > 0) ? it->second + 1 : -(it->second + 1);
}
}
// Convert the infix region spec to RPN.
rpn_ = generate_rpn(id_, region_);
// Check if this is a simple cell.
simple_ = true;
for (int32_t token : rpn_) {
if ((token == OP_COMPLEMENT) || (token == OP_UNION)) {
simple_ = false;
break;
}
}
// If this cell is simple, remove all the superfluous operator tokens.
if (simple_) {
size_t i0 = 0;
size_t i1 = 0;
while (i1 < rpn_.size()) {
if (rpn_[i1] < OP_UNION) {
rpn_[i0] = rpn_[i1];
++i0;
}
++i1;
}
rpn_.resize(i0);
}
rpn_.shrink_to_fit();
// Read the translation vector.
if (check_for_node(cell_node, "translation")) {
if (fill_ == C_NONE) {
fatal_error(fmt::format("Cannot apply a translation to cell {}"
" because it is not filled with another universe", id_));
}
auto xyz {get_node_array<double>(cell_node, "translation")};
if (xyz.size() != 3) {
fatal_error(fmt::format(
"Non-3D translation vector applied to cell {}", id_));
}
translation_ = xyz;
}
// Read the rotation transform.
if (check_for_node(cell_node, "rotation")) {
if (fill_ == C_NONE) {
fatal_error(fmt::format("Cannot apply a rotation to cell {}"
" because it is not filled with another universe", id_));
}
auto rot {get_node_array<double>(cell_node, "rotation")};
if (rot.size() != 3 && rot.size() != 9) {
fatal_error(fmt::format(
"Non-3D rotation vector applied to cell {}", id_));
}
// Compute and store the rotation matrix.
rotation_.reserve(rot.size() == 9 ? 9 : 12);
if (rot.size() == 3) {
double phi = -rot[0] * PI / 180.0;
double theta = -rot[1] * PI / 180.0;
double psi = -rot[2] * PI / 180.0;
rotation_.push_back(std::cos(theta) * std::cos(psi));
rotation_.push_back(-std::cos(phi) * std::sin(psi)
+ std::sin(phi) * std::sin(theta) * std::cos(psi));
rotation_.push_back(std::sin(phi) * std::sin(psi)
+ std::cos(phi) * std::sin(theta) * std::cos(psi));
rotation_.push_back(std::cos(theta) * std::sin(psi));
rotation_.push_back(std::cos(phi) * std::cos(psi)
+ std::sin(phi) * std::sin(theta) * std::sin(psi));
rotation_.push_back(-std::sin(phi) * std::cos(psi)
+ std::cos(phi) * std::sin(theta) * std::sin(psi));
rotation_.push_back(-std::sin(theta));
rotation_.push_back(std::sin(phi) * std::cos(theta));
rotation_.push_back(std::cos(phi) * std::cos(theta));
// When user specifies angles, write them at end of vector
rotation_.push_back(rot[0]);
rotation_.push_back(rot[1]);
rotation_.push_back(rot[2]);
} else {
std::copy(rot.begin(), rot.end(), std::back_inserter(rotation_));
}
}
}
//==============================================================================
bool
CSGCell::contains(Position r, Direction u, int32_t on_surface) const
{
if (simple_) {
return contains_simple(r, u, on_surface);
} else {
return contains_complex(r, u, on_surface);
}
}
//==============================================================================
std::pair<double, int32_t>
CSGCell::distance(Position r, Direction u, int32_t on_surface, Particle* p) const
{
double min_dist {INFTY};
int32_t i_surf {std::numeric_limits<int32_t>::max()};
for (int32_t token : rpn_) {
// Ignore this token if it corresponds to an operator rather than a region.
if (token >= OP_UNION) continue;
// Calculate the distance to this surface.
// Note the off-by-one indexing
bool coincident {std::abs(token) == std::abs(on_surface)};
double d {model::surfaces[abs(token)-1]->distance(r, u, coincident)};
// Check if this distance is the new minimum.
if (d < min_dist) {
if (min_dist - d >= FP_PRECISION*min_dist) {
min_dist = d;
i_surf = -token;
}
}
}
return {min_dist, i_surf};
}
//==============================================================================
void
CSGCell::to_hdf5(hid_t cell_group) const
{
// Create a group for this cell.
auto group = create_group(cell_group, fmt::format("cell {}", id_));
if (!name_.empty()) {
write_string(group, "name", name_, false);
}
write_dataset(group, "universe", model::universes[universe_]->id_);
// Write the region specification.
if (!region_.empty()) {
std::stringstream region_spec {};
for (int32_t token : region_) {
if (token == OP_LEFT_PAREN) {
region_spec << " (";
} else if (token == OP_RIGHT_PAREN) {
region_spec << " )";
} else if (token == OP_COMPLEMENT) {
region_spec << " ~";
} else if (token == OP_INTERSECTION) {
} else if (token == OP_UNION) {
region_spec << " |";
} else {
// Note the off-by-one indexing
auto surf_id = model::surfaces[abs(token)-1]->id_;
region_spec << " " << ((token > 0) ? surf_id : -surf_id);
}
}
write_string(group, "region", region_spec.str(), false);
}
// Write fill information.
if (type_ == Fill::MATERIAL) {
write_dataset(group, "fill_type", "material");
vector<int32_t> mat_ids;
for (auto i_mat : material_) {
if (i_mat != MATERIAL_VOID) {
mat_ids.push_back(model::materials[i_mat]->id_);
} else {
mat_ids.push_back(MATERIAL_VOID);
}
}
if (mat_ids.size() == 1) {
write_dataset(group, "material", mat_ids[0]);
} else {
write_dataset(group, "material", mat_ids);
}
vector<double> temps;
for (auto sqrtkT_val : sqrtkT_)
temps.push_back(sqrtkT_val * sqrtkT_val / K_BOLTZMANN);
write_dataset(group, "temperature", temps);
} else if (type_ == Fill::UNIVERSE) {
write_dataset(group, "fill_type", "universe");
write_dataset(group, "fill", model::universes[fill_]->id_);
if (translation_ != Position(0, 0, 0)) {
write_dataset(group, "translation", translation_);
}
if (!rotation_.empty()) {
if (rotation_.size() == 12) {
array<double, 3> rot {rotation_[9], rotation_[10], rotation_[11]};
write_dataset(group, "rotation", rot);
} else {
write_dataset(group, "rotation", rotation_);
}
}
} else if (type_ == Fill::LATTICE) {
write_dataset(group, "fill_type", "lattice");
write_dataset(group, "lattice", model::lattices[fill_]->id_);
}
close_group(group);
}
BoundingBox CSGCell::bounding_box_simple() const {
BoundingBox bbox;
for (int32_t token : rpn_) {
bbox &= model::surfaces[abs(token)-1]->bounding_box(token > 0);
}
return bbox;
}
void CSGCell::apply_demorgan(
vector<int32_t>::iterator start, vector<int32_t>::iterator stop)
{
while (start < stop) {
if (*start < OP_UNION) { *start *= -1; }
else if (*start == OP_UNION) { *start = OP_INTERSECTION; }
else if (*start == OP_INTERSECTION) { *start = OP_UNION; }
start++;
}
}
vector<int32_t>::iterator CSGCell::find_left_parenthesis(
vector<int32_t>::iterator start, const vector<int32_t>& rpn)
{
// start search at zero
int parenthesis_level = 0;
auto it = start;
while (it != rpn.begin()) {
// look at two tokens at a time
int32_t one = *it;
int32_t two = *(it - 1);
// decrement parenthesis level if there are two adjacent surfaces
if (one < OP_UNION && two < OP_UNION) {
parenthesis_level--;
// increment if there are two adjacent operators
} else if (one >= OP_UNION && two >= OP_UNION) {
parenthesis_level++;
}
// if the level gets to zero, return the position
if (parenthesis_level == 0) {
// move the iterator back one before leaving the loop
// so that all tokens in the parenthesis block are included
it--;
break;
}
// continue loop, one token at a time
it--;
}
return it;
}
void CSGCell::remove_complement_ops(vector<int32_t>& rpn)
{
auto it = std::find(rpn.begin(), rpn.end(), OP_COMPLEMENT);
while (it != rpn.end()) {
// find the opening parenthesis (if any)
auto left = find_left_parenthesis(it, rpn);
vector<int32_t> tmp(left, it + 1);
// apply DeMorgan's law to any surfaces/operators between these
// positions in the RPN
apply_demorgan(left, it);
// remove complement operator
rpn.erase(it);
// update iterator position
it = std::find(rpn.begin(), rpn.end(), OP_COMPLEMENT);
}
}
BoundingBox CSGCell::bounding_box_complex(vector<int32_t> rpn)
{
// remove complements by adjusting surface signs and operators
remove_complement_ops(rpn);
vector<BoundingBox> stack(rpn.size());
int i_stack = -1;
for (auto& token : rpn) {
if (token == OP_UNION) {
stack[i_stack - 1] = stack[i_stack - 1] | stack[i_stack];
i_stack--;
} else if (token == OP_INTERSECTION) {
stack[i_stack - 1] = stack[i_stack - 1] & stack[i_stack];
i_stack--;
} else {
i_stack++;
stack[i_stack] = model::surfaces[abs(token) - 1]->bounding_box(token > 0);
}
}
Ensures(i_stack == 0);
return stack.front();
}
BoundingBox CSGCell::bounding_box() const {
return simple_ ? bounding_box_simple() : bounding_box_complex(rpn_);
}
//==============================================================================
bool
CSGCell::contains_simple(Position r, Direction u, int32_t on_surface) const
{
for (int32_t token : rpn_) {
// Assume that no tokens are operators. Evaluate the sense of particle with
// respect to the surface and see if the token matches the sense. If the
// particle's surface attribute is set and matches the token, that
// overrides the determination based on sense().
if (token == on_surface) {
} else if (-token == on_surface) {
return false;
} else {
// Note the off-by-one indexing
bool sense = model::surfaces[abs(token)-1]->sense(r, u);
if (sense != (token > 0)) {return false;}
}
}
return true;
}
//==============================================================================
bool
CSGCell::contains_complex(Position r, Direction u, int32_t on_surface) const
{
// Make a stack of booleans. We don't know how big it needs to be, but we do
// know that rpn.size() is an upper-bound.
vector<bool> stack(rpn_.size());
int i_stack = -1;
for (int32_t token : rpn_) {
// If the token is a binary operator (intersection/union), apply it to
// the last two items on the stack. If the token is a unary operator
// (complement), apply it to the last item on the stack.
if (token == OP_UNION) {
stack[i_stack-1] = stack[i_stack-1] || stack[i_stack];
i_stack --;
} else if (token == OP_INTERSECTION) {
stack[i_stack-1] = stack[i_stack-1] && stack[i_stack];
i_stack --;
} else if (token == OP_COMPLEMENT) {
stack[i_stack] = !stack[i_stack];
} else {
// If the token is not an operator, evaluate the sense of particle with
// respect to the surface and see if the token matches the sense. If the
// particle's surface attribute is set and matches the token, that
// overrides the determination based on sense().
i_stack ++;
if (token == on_surface) {
stack[i_stack] = true;
} else if (-token == on_surface) {
stack[i_stack] = false;
} else {
// Note the off-by-one indexing
bool sense = model::surfaces[abs(token)-1]->sense(r, u);
stack[i_stack] = (sense == (token > 0));
}
}
}
if (i_stack == 0) {
// The one remaining bool on the stack indicates whether the particle is
// in the cell.
return stack[i_stack];
} else {
// This case occurs if there is no region specification since i_stack will
// still be -1.
return true;
}
}
//==============================================================================
// DAGMC Cell implementation
//==============================================================================
#ifdef DAGMC
DAGCell::DAGCell() : Cell{} { simple_ = true; };
std::pair<double, int32_t>
DAGCell::distance(Position r, Direction u, int32_t on_surface, Particle* p) const
{
Expects(p);
// if we've changed direction or we're not on a surface,
// reset the history and update last direction
if (u != p->last_dir() || on_surface == 0) {
p->history().reset();
p->last_dir() = u;
}
moab::ErrorCode rval;
moab::EntityHandle vol = dagmc_ptr_->entity_by_index(3, dag_index_);
moab::EntityHandle hit_surf;
double dist;
double pnt[3] = {r.x, r.y, r.z};
double dir[3] = {u.x, u.y, u.z};
rval = dagmc_ptr_->ray_fire(vol, pnt, dir, hit_surf, dist, &p->history());
MB_CHK_ERR_CONT(rval);
int surf_idx;
if (hit_surf != 0) {
surf_idx = dagmc_ptr_->index_by_handle(hit_surf);
} else {
// indicate that particle is lost
surf_idx = -1;
dist = INFINITY;
}
return {dist, surf_idx};
}
bool DAGCell::contains(Position r, Direction u, int32_t on_surface) const
{
moab::ErrorCode rval;
moab::EntityHandle vol = dagmc_ptr_->entity_by_index(3, dag_index_);
int result = 0;
double pnt[3] = {r.x, r.y, r.z};
double dir[3] = {u.x, u.y, u.z};
rval = dagmc_ptr_->point_in_volume(vol, pnt, result, dir);
MB_CHK_ERR_CONT(rval);
return result;
}
void DAGCell::to_hdf5(hid_t group_id) const { return; }
BoundingBox DAGCell::bounding_box() const
{
moab::ErrorCode rval;
moab::EntityHandle vol = dagmc_ptr_->entity_by_index(3, dag_index_);
double min[3], max[3];
rval = dagmc_ptr_->getobb(vol, min, max);
MB_CHK_ERR_CONT(rval);
return {min[0], max[0], min[1], max[1], min[2], max[2]};
}
#endif
//==============================================================================
// UniversePartitioner implementation
//==============================================================================
UniversePartitioner::UniversePartitioner(const Universe& univ)
{
// Define an ordered set of surface indices that point to z-planes. Use a
// functor to to order the set by the z0_ values of the corresponding planes.
struct compare_surfs {
bool operator()(const int32_t& i_surf, const int32_t& j_surf) const
{
const auto* surf = model::surfaces[i_surf].get();
const auto* zplane = dynamic_cast<const SurfaceZPlane*>(surf);
double zi = zplane->z0_;
surf = model::surfaces[j_surf].get();
zplane = dynamic_cast<const SurfaceZPlane*>(surf);
double zj = zplane->z0_;
return zi < zj;
}
};
std::set<int32_t, compare_surfs> surf_set;
// Find all of the z-planes in this universe. A set is used here for the
// O(log(n)) insertions that will ensure entries are not repeated.
for (auto i_cell : univ.cells_) {
for (auto token : model::cells[i_cell]->rpn_) {
if (token < OP_UNION) {
auto i_surf = std::abs(token) - 1;
const auto* surf = model::surfaces[i_surf].get();
if (const auto* zplane = dynamic_cast<const SurfaceZPlane*>(surf))
surf_set.insert(i_surf);
}
}
}
// Populate the surfs_ vector from the ordered set.
surfs_.insert(surfs_.begin(), surf_set.begin(), surf_set.end());
// Populate the partition lists.
partitions_.resize(surfs_.size() + 1);
for (auto i_cell : univ.cells_) {
// It is difficult to determine the bounds of a complex cell, so add complex
// cells to all partitions.
if (!model::cells[i_cell]->simple_) {
for (auto& p : partitions_) p.push_back(i_cell);
continue;
}
// Find the tokens for bounding z-planes.
int32_t lower_token = 0, upper_token = 0;
double min_z, max_z;
for (auto token : model::cells[i_cell]->rpn_) {
if (token < OP_UNION) {
const auto* surf = model::surfaces[std::abs(token) - 1].get();
if (const auto* zplane = dynamic_cast<const SurfaceZPlane*>(surf)) {
if (lower_token == 0 || zplane->z0_ < min_z) {
lower_token = token;
min_z = zplane->z0_;
}
if (upper_token == 0 || zplane->z0_ > max_z) {
upper_token = token;
max_z = zplane->z0_;
}
}
}
}
// If there are no bounding z-planes, add this cell to all partitions.
if (lower_token == 0) {
for (auto& p : partitions_) p.push_back(i_cell);
continue;
}
// Find the first partition this cell lies in. If the lower_token indicates
// a negative halfspace, then the cell is unbounded in the lower direction
// and it lies in the first partition onward. Otherwise, it is bounded by
// the positive halfspace given by the lower_token.
int first_partition = 0;
if (lower_token > 0) {
for (int i = 0; i < surfs_.size(); ++i) {
if (lower_token == surfs_[i] + 1) {
first_partition = i + 1;
break;
}
}
}
// Find the last partition this cell lies in. The logic is analogous to the
// logic for first_partition.
int last_partition = surfs_.size();
if (upper_token < 0) {
for (int i = first_partition; i < surfs_.size(); ++i) {
if (upper_token == -(surfs_[i] + 1)) {
last_partition = i;
break;
}
}
}
// Add the cell to all relevant partitions.
for (int i = first_partition; i <= last_partition; ++i) {
partitions_[i].push_back(i_cell);
}
}
}
const vector<int32_t>& UniversePartitioner::get_cells(
Position r, Direction u) const
{
// Perform a binary search for the partition containing the given coordinates.
int left = 0;
int middle = (surfs_.size() - 1) / 2;
int right = surfs_.size() - 1;
while (true) {
// Check the sense of the coordinates for the current surface.
const auto& surf = *model::surfaces[surfs_[middle]];
if (surf.sense(r, u)) {
// The coordinates lie in the positive halfspace. Recurse if there are
// more surfaces to check. Otherwise, return the cells on the positive
// side of this surface.
int right_leaf = right - (right - middle) / 2;
if (right_leaf != middle) {
left = middle + 1;
middle = right_leaf;
} else {
return partitions_[middle+1];
}
} else {
// The coordinates lie in the negative halfspace. Recurse if there are
// more surfaces to check. Otherwise, return the cells on the negative
// side of this surface.
int left_leaf = left + (middle - left) / 2;
if (left_leaf != middle) {
right = middle-1;
middle = left_leaf;
} else {
return partitions_[middle];
}
}
}
}
//==============================================================================
// Non-method functions
//==============================================================================
void read_cells(pugi::xml_node node)
{
// Count the number of cells.
int n_cells = 0;
for (pugi::xml_node cell_node: node.children("cell")) {n_cells++;}
if (n_cells == 0) {
fatal_error("No cells found in geometry.xml!");
}
// Loop over XML cell elements and populate the array.
model::cells.reserve(n_cells);