-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3_steerability.py
344 lines (312 loc) · 12.8 KB
/
3_steerability.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# -- Cluster analysis and diversity of clusters --
# Imports
from src.load_data import load_all_data, prefilter_data, load_text_trajectories, get_trajectory_distances
from src.constants import PLOT_DIR, MAX_N_CLUSTERS, PCA_DIM
from src.plot_utils import save_fig, new_fig, setup_axes, PLOT_COLORS, save_with_cropped_whitespace
from src.stats_utils import bootstrap_mean_interval
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
import matplotlib.ticker as mtick
from collections import defaultdict
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from sklearn.decomposition import PCA
import os
BINS = [(0,21), (21,41), (41,61), (61,81), (81,101) ]
# Constants
file_name = __file__.split('/')[-1].split('.')[0]
plot_dir = f"{PLOT_DIR}/{file_name}"
if True:
# Load data
dataset, (user_summaries, text_embeddings, image_embeddings) = load_all_data(force=False)
user_df = prefilter_data(user_summaries)
# Load trajectories
text_trajectories = load_text_trajectories(dataset, user_summaries, text_embeddings, only_pos=True)
# Prompt-distribution
trajectory_distances_text = get_trajectory_distances(dataset, text_trajectories, text_embeddings)
# Get target image groupings by category
target_meta = [user_df[user_df.target==t].iloc[0] for t in user_df.target.unique()]
labels = defaultdict(list)
for t in target_meta:
for label_k, label_v in eval(t.target_labels).items():
if label_v:
labels[label_k].append(t.target)
# Now per user + across all users in a target, do clustering using "silhouette score" to auto-tune
# the number of clusters
def autofind_clusters(X, max_n_clusters=None):
if len(X) < 2:
return {
'model': None,
'labels': [0],
'N':len(X),
'n_cluster': 1,
'silhouette_score': -1
}
if max_n_clusters is None:
max_n_clusters = len(X) // 2
max_n_clusters = min(max_n_clusters, len(X) // 2)
sil_score_max = -1 #this is the minimum possible score
best_labels = [0]
best_model = None
best_n_clusters = 1
for n_clusters in range(2,max_n_clusters+1):
model = KMeans(n_clusters=n_clusters, init='k-means++', max_iter=100, n_init=1)
labels = model.fit_predict(X)
if len(np.unique(labels)) == 1:
continue
sil_score = silhouette_score(X, labels)
if sil_score > sil_score_max:
sil_score_max = sil_score
best_n_clusters = n_clusters
best_labels = labels
best_model = model
return {
'model': best_model,
'labels':best_labels,
'N':len(X),
'n_cluster':best_n_clusters,
'silhouette_score':sil_score_max
}
def count_consecutive(l):
last = l[0]
same = [0]
for l_i in l:
if last == l_i:
same[-1] += 1
else:
same.append(1)
last = l_i
same = np.array(same)
return same
def _local_steerability(scores):
if len(scores) <= 1:
return np.nan
return np.mean(np.sign(scores[1:]-scores[:-1]) > 0).astype(float)
def local_steerability(scores, clusters, increase=True, score_weighting=False, score_bin=None):
if len(scores) <= 1:
return np.nan
if increase:
local_changes = (np.sign(scores[1:]-scores[:-1]) > 0).astype(float)
if score_weighting:
local_changes *= (scores[:-1]/100)
else:
local_changes = (np.sign(scores[1:]-scores[:-1]) < 0).astype(float)
if score_weighting:
local_changes *= (1-scores[:-1]/100)
if score_bin is not None:
local_changes = local_changes[np.where((score_bin[0] <= scores[:-1]) & (scores[:-1] < score_bin[1]))[0]]
if len(local_changes) == 0:
return np.nan
return np.mean(local_changes)
def global_steerability(scores, clusters, increase=True, score_bin=None):
if len(clusters) <= 1 or len(np.unique(clusters)) <= 1:
return np.nan
idx = [0]+list(np.where(clusters[1:] != clusters[:-1])[0]+1)+[len(clusters)]
max_in_cluster_area = np.array([
np.max(scores[i1:i2])
for i1,i2 in zip(idx[:-1], idx[1:])
])
if score_bin is not None:
max_in_cluster_area = max_in_cluster_area[np.where((score_bin[0] <= max_in_cluster_area[:-1]) & (max_in_cluster_area[:-1] < score_bin[1]))[0]]
if len(max_in_cluster_area) <= 1:
return np.nan
return _local_steerability(max_in_cluster_area*(1 if increase else -1))
### vv -- Computing steerability -- vv
def score_to_bin(x, bins=BINS):
for i,bin in enumerate(bins):
if bin[0] <= x < bin[1]:
return i
return -1
def bin_to_text(idx, bins=BINS):
if idx == -1:
return "Start"
return f"[{bins[idx][0]} -- {bins[idx][1]}]"
def gen_markov_model(use_val_data=False, use_rating=False, use_models=['SDv2.1'], normalization=1, bins=BINS):
markov_models = {}
n_per_target = {}
for k,v in data_by_target.items():
group_markov_model = defaultdict(list)
n_per_target[k] = 0
for target_i in v:
for user_j in target_i:
model = user_j['model_used']
data_split = user_j['data_split']
if (use_val_data) ^ (data_split == 'ArtWhisperer-Validation'):
continue
if not np.any([mi==model for mi in use_models]):
continue
if use_rating:
group_markov_model[-1].append(score_to_bin((100/9.5)*(user_j['rating_trajectory'][0]-0.5)))
if user_j['N'] < 2:
continue
for score_1,score_2 in zip(user_j['rating_trajectory'][:-1], user_j['rating_trajectory'][1:]):
group_markov_model[score_to_bin((100/9.5) * (score_1-0.5))].append(score_to_bin((100/9.5) * (score_2-0.5)))
else:
group_markov_model[-1].append(score_to_bin(user_j['score_trajectory'][0]))
if user_j['N'] < 2:
continue
for score_1,score_2 in zip(user_j['score_trajectory'][:-1], user_j['score_trajectory'][1:]):
group_markov_model[score_to_bin(score_1)].append(score_to_bin(score_2))
n_per_target[k] = n_per_target[k] + 1
if len(group_markov_model) == 0:
continue
group_markov_model_probs = {}
for bin in range(-1, len(bins)):
if bin in group_markov_model:
to_bins = group_markov_model[bin]
else:
to_bins = group_markov_model[-1]
u,c = np.unique(to_bins, return_counts=True)
max_u = len(bins)
zip_d = {ci:normalization/(np.sum(c) + normalization*len(bins)) for ci in range(max_u)}
zip_d.update({ui:(normalization+ci)/(np.sum(c) + normalization*len(bins)) for ui,ci in zip(u,c)})
group_markov_model_probs[bin] = np.array(list([zip_d[ci] for ci in range(max_u)]))
markov_models[k] = group_markov_model_probs
return markov_models
def sim_markov_model(mmodel, seed=0, n_run=100, n_trial=100, stopping_time=False, bins=BINS):
rng = np.random.RandomState(seed)
trial_outcomes = []
for _ in range(n_trial):
start = -1
i = -1
for i in range(n_run):
start = max(start, rng.choice(len(mmodel[start]), p=mmodel[start]))
if stopping_time and (start == len(bins)-1):
break
if stopping_time:
trial_outcomes.append(i+1)
else:
trial_outcomes.append(start)
return trial_outcomes
def sim_and_plot(markov_models, plot=True, filename=None, bins=BINS):
markov_sims = {}
for mmodel_k, mmodel in markov_models.items():
try:
markov_sims[mmodel_k] = sim_markov_model(mmodel, stopping_time=True, bins=bins)
except:
continue
group_avgs = defaultdict(list)
for k,v in labels.items():
for vi in v:
if vi in markov_sims:
group_avgs[k].append(np.mean(markov_sims[vi]))
if plot:
fig,ax = new_fig(nrows=1,ncols=1,figsize=(12,6))
fig.set_tight_layout(True)
for i,(k,v) in enumerate(group_avgs.items()):
ax.bar(i, np.mean(v), 0.7,
yerr=np.std(v, ddof=1)/np.sqrt(len(v)),
capsize=4,
label=f"{k}",
edgecolor='black',
color=PLOT_COLORS[i],
)
ax.yaxis.grid(True)
x = np.arange(len(group_avgs))
k_order = list(group_avgs.keys())
ax.set_xticks(x)
ax.set_xticklabels(k_order, rotation=45, fontsize=12)
ax.set_ylabel("Expected stopping time")
save_fig(filename=filename,
path=plot_dir,
exts=['jpg'],
fig=fig,
tight=False)
filepath = f"{plot_dir}/{filename}.jpg"
save_with_cropped_whitespace(filepath)
return markov_sims, group_avgs
### ^^ -- Computing steerability -- ^^
def figure_6():
eps = 1e0
mm_game = gen_markov_model(use_val_data=False, normalization=eps, bins=BINS)
sim_and_plot(mm_game, plot=True, filename="Figure 6", bins=BINS)
def figure_10():
eps = 1e0
mm_s2_1 = gen_markov_model(use_val_data=True, use_models=[2.1], normalization=eps, bins=BINS)
mm_s1_5 = gen_markov_model(use_val_data=True, use_models=[1.5], normalization=eps, bins=BINS)
_, group_avgs_2_1 = sim_and_plot(mm_s2_1, plot=False, bins=BINS)
_, group_avgs_1_5 = sim_and_plot(mm_s1_5, plot=False, bins=BINS)
fig,ax = new_fig(nrows=1,ncols=1,figsize=(12,8))
fig.set_tight_layout(True)
bar_width = 0.4
for j,group_avgs in enumerate([group_avgs_2_1, group_avgs_1_5]):
for i,(k,v) in enumerate(group_avgs.items()):
ax.bar(i + j*bar_width - (bar_width/2) + 1e-2*j, np.mean(v), bar_width,
yerr=np.std(v, ddof=1)/np.sqrt(len(v)),
capsize=4,
label=f"{k}",
hatch="/" if j == 1 else "",
edgecolor='black',
color=PLOT_COLORS[i],
)
ax.yaxis.grid(True)
x = np.arange(len(group_avgs))
k_order = list(group_avgs.keys())
ax.set_xticks(x)
ax.set_xticklabels(k_order, rotation=60, fontsize=10)
ax.set_ylabel("Expected stopping time")
circ1 = mpatches.Patch( facecolor="lightgray", alpha=1, hatch='',label='Model 1')
circ2= mpatches.Patch( facecolor="lightgray", alpha=1, hatch='/',label='Model 2')
ax.legend(handles = [circ1,circ2],loc=2)
ax.set_ylim((0,14.5))
filename="Figure 10"
save_fig(
filename=filename,
path=plot_dir,
exts=['jpg'],
fig=fig,
tight=False
)
filepath = f"{plot_dir}/{filename}.jpg"
save_with_cropped_whitespace(filepath)
def figure_13():
eps = 1e0
mm_s2_1 = gen_markov_model(use_val_data=True, use_models=[2.1], normalization=eps, bins=BINS)
mm_s2_1r = gen_markov_model(use_val_data=True, use_rating=True, use_models=[1.5], normalization=eps, bins=BINS)
_, group_avgs_2_1 = sim_and_plot(mm_s2_1, plot=False, bins=BINS)
_, group_avgs_2_1r = sim_and_plot(mm_s2_1r, plot=False, bins=BINS)
fig,ax = new_fig(nrows=1,ncols=1,figsize=(12,8))
fig.set_tight_layout(True)
bar_width = 0.4
for j,group_avgs in enumerate([group_avgs_2_1, group_avgs_2_1r]):
for i,(k,v) in enumerate(group_avgs.items()):
ax.bar(i + j*bar_width - (bar_width/2) + 1e-2*j, np.mean(v), bar_width,
yerr=np.std(v, ddof=1)/np.sqrt(len(v)),
capsize=4,
label=f"{k}",
hatch="/" if j == 1 else "",
edgecolor='black',
color=PLOT_COLORS[i],
)
ax.yaxis.grid(True)
x = np.arange(len(group_avgs))
k_order = list(group_avgs.keys())
ax.set_xticks(x)
ax.set_xticklabels([ki.replace("Contains ", "").replace("Is ", "").replace(" content", "").capitalize().replace("Ai", "AI")
for ki in k_order], rotation=60, fontsize=10)
ax.set_ylabel("Expected stopping time")
circ1 = mpatches.Patch( facecolor="lightgray", alpha=1, hatch='',label='Score')
circ2= mpatches.Patch( facecolor="lightgray", alpha=1, hatch='/',label='Human Rating')
ax.legend(handles = [circ1,circ2],loc=2)
ax.set_ylim((0,14.5))
filename="Figure 13"
save_fig(
filename=filename,
path=plot_dir,
exts=['jpg'],
fig=fig,
tight=False
)
filepath = f"{plot_dir}/{filename}.jpg"
save_with_cropped_whitespace(filepath)
if __name__ == '__main__':
# Using the score trajectories, not embeddings here
cdata = text_trajectories['CLIP']
data_by_target = {k: [cdata[k]] for k in cdata if len(cdata[k]) >= 10}
if False:
figure_6()
if False:
figure_10()
if False:
figure_13()