forked from zeux/meshoptimizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
stream.cpp
1005 lines (821 loc) · 27.6 KB
/
stream.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// This file is part of gltfpack; see gltfpack.h for version/license details
#include "gltfpack.h"
#include <algorithm>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdint.h>
#include "../src/meshoptimizer.h"
struct Bounds
{
Attr min, max;
Bounds()
{
min.f[0] = min.f[1] = min.f[2] = min.f[3] = +FLT_MAX;
max.f[0] = max.f[1] = max.f[2] = max.f[3] = -FLT_MAX;
}
bool isValid() const
{
return min.f[0] <= max.f[0] && min.f[1] <= max.f[1] && min.f[2] <= max.f[2] && min.f[3] <= max.f[3];
}
};
static void updateAttributeBounds(const Mesh& mesh, cgltf_attribute_type type, Bounds& b)
{
Attr pad = {};
for (size_t j = 0; j < mesh.streams.size(); ++j)
{
const Stream& s = mesh.streams[j];
if (s.type == type)
{
if (s.target == 0)
{
for (size_t k = 0; k < s.data.size(); ++k)
{
const Attr& a = s.data[k];
b.min.f[0] = std::min(b.min.f[0], a.f[0]);
b.min.f[1] = std::min(b.min.f[1], a.f[1]);
b.min.f[2] = std::min(b.min.f[2], a.f[2]);
b.min.f[3] = std::min(b.min.f[3], a.f[3]);
b.max.f[0] = std::max(b.max.f[0], a.f[0]);
b.max.f[1] = std::max(b.max.f[1], a.f[1]);
b.max.f[2] = std::max(b.max.f[2], a.f[2]);
b.max.f[3] = std::max(b.max.f[3], a.f[3]);
}
}
else
{
for (size_t k = 0; k < s.data.size(); ++k)
{
const Attr& a = s.data[k];
pad.f[0] = std::max(pad.f[0], fabsf(a.f[0]));
pad.f[1] = std::max(pad.f[1], fabsf(a.f[1]));
pad.f[2] = std::max(pad.f[2], fabsf(a.f[2]));
pad.f[3] = std::max(pad.f[3], fabsf(a.f[3]));
}
}
}
}
for (int k = 0; k < 4; ++k)
{
b.min.f[k] -= pad.f[k];
b.max.f[k] += pad.f[k];
}
}
QuantizationPosition prepareQuantizationPosition(const std::vector<Mesh>& meshes, const Settings& settings)
{
QuantizationPosition result = {};
result.bits = settings.pos_bits;
result.normalized = settings.pos_normalized;
Bounds b;
for (size_t i = 0; i < meshes.size(); ++i)
{
updateAttributeBounds(meshes[i], cgltf_attribute_type_position, b);
}
if (b.isValid())
{
result.offset[0] = b.min.f[0];
result.offset[1] = b.min.f[1];
result.offset[2] = b.min.f[2];
result.scale = std::max(b.max.f[0] - b.min.f[0], std::max(b.max.f[1] - b.min.f[1], b.max.f[2] - b.min.f[2]));
}
return result;
}
static size_t follow(std::vector<size_t>& parents, size_t index)
{
while (index != parents[index])
{
size_t parent = parents[index];
parents[index] = parents[parent];
index = parent;
}
return index;
}
void prepareQuantizationTexture(cgltf_data* data, std::vector<QuantizationTexture>& result, std::vector<size_t>& indices, const std::vector<Mesh>& meshes, const Settings& settings)
{
// use union-find to associate each material with a canonical material
// this is necessary because any set of materials that are used on the same mesh must use the same quantization
std::vector<size_t> parents(result.size());
for (size_t i = 0; i < parents.size(); ++i)
parents[i] = i;
for (size_t i = 0; i < meshes.size(); ++i)
{
const Mesh& mesh = meshes[i];
if (!mesh.material && mesh.variants.empty())
continue;
size_t root = follow(parents, (mesh.material ? mesh.material : mesh.variants[0].material) - data->materials);
for (size_t j = 0; j < mesh.variants.size(); ++j)
{
size_t var = follow(parents, mesh.variants[j].material - data->materials);
parents[var] = root;
}
indices[i] = root;
}
// compute canonical material bounds based on meshes that use them
std::vector<Bounds> bounds(result.size());
for (size_t i = 0; i < meshes.size(); ++i)
{
const Mesh& mesh = meshes[i];
if (!mesh.material && mesh.variants.empty())
continue;
indices[i] = follow(parents, indices[i]);
updateAttributeBounds(mesh, cgltf_attribute_type_texcoord, bounds[indices[i]]);
}
// update all material data using canonical bounds
for (size_t i = 0; i < result.size(); ++i)
{
QuantizationTexture& qt = result[i];
qt.bits = settings.tex_bits;
qt.normalized = true;
const Bounds& b = bounds[follow(parents, i)];
if (b.isValid())
{
qt.offset[0] = b.min.f[0];
qt.offset[1] = b.min.f[1];
qt.scale[0] = b.max.f[0] - b.min.f[0];
qt.scale[1] = b.max.f[1] - b.min.f[1];
}
}
}
void getPositionBounds(float min[3], float max[3], const Stream& stream, const QuantizationPosition& qp, const Settings& settings)
{
assert(stream.type == cgltf_attribute_type_position);
assert(stream.data.size() > 0);
min[0] = min[1] = min[2] = FLT_MAX;
max[0] = max[1] = max[2] = -FLT_MAX;
for (size_t i = 0; i < stream.data.size(); ++i)
{
const Attr& a = stream.data[i];
for (int k = 0; k < 3; ++k)
{
min[k] = std::min(min[k], a.f[k]);
max[k] = std::max(max[k], a.f[k]);
}
}
if (settings.quantize)
{
if (settings.pos_float)
{
for (int k = 0; k < 3; ++k)
{
min[k] = meshopt_quantizeFloat(min[k], qp.bits);
max[k] = meshopt_quantizeFloat(max[k], qp.bits);
}
}
else
{
float pos_rscale = qp.scale == 0.f ? 0.f : 1.f / qp.scale * (stream.target > 0 && qp.normalized ? 32767.f / 65535.f : 1.f);
for (int k = 0; k < 3; ++k)
{
if (stream.target == 0)
{
min[k] = float(meshopt_quantizeUnorm((min[k] - qp.offset[k]) * pos_rscale, qp.bits));
max[k] = float(meshopt_quantizeUnorm((max[k] - qp.offset[k]) * pos_rscale, qp.bits));
}
else
{
min[k] = (min[k] >= 0.f ? 1.f : -1.f) * float(meshopt_quantizeUnorm(fabsf(min[k]) * pos_rscale, qp.bits));
max[k] = (max[k] >= 0.f ? 1.f : -1.f) * float(meshopt_quantizeUnorm(fabsf(max[k]) * pos_rscale, qp.bits));
}
}
}
}
}
static void renormalizeWeights(uint8_t (&w)[4])
{
int sum = w[0] + w[1] + w[2] + w[3];
if (sum == 255)
return;
// we assume that the total error is limited to 0.5/component = 2
// this means that it's acceptable to adjust the max. component to compensate for the error
int max = 0;
for (int k = 1; k < 4; ++k)
if (w[k] > w[max])
max = k;
w[max] += uint8_t(255 - sum);
}
static void encodeOct(int& fu, int& fv, float nx, float ny, float nz, int bits)
{
float nl = fabsf(nx) + fabsf(ny) + fabsf(nz);
float ns = nl == 0.f ? 0.f : 1.f / nl;
nx *= ns;
ny *= ns;
float u = (nz >= 0.f) ? nx : (1 - fabsf(ny)) * (nx >= 0.f ? 1.f : -1.f);
float v = (nz >= 0.f) ? ny : (1 - fabsf(nx)) * (ny >= 0.f ? 1.f : -1.f);
fu = meshopt_quantizeSnorm(u, bits);
fv = meshopt_quantizeSnorm(v, bits);
}
static void encodeQuat(int16_t v[4], const Attr& a, int bits)
{
const float scaler = sqrtf(2.f);
// establish maximum quaternion component
int qc = 0;
qc = fabsf(a.f[1]) > fabsf(a.f[qc]) ? 1 : qc;
qc = fabsf(a.f[2]) > fabsf(a.f[qc]) ? 2 : qc;
qc = fabsf(a.f[3]) > fabsf(a.f[qc]) ? 3 : qc;
// we use double-cover properties to discard the sign
float sign = a.f[qc] < 0.f ? -1.f : 1.f;
// note: we always encode a cyclical swizzle to be able to recover the order via rotation
v[0] = int16_t(meshopt_quantizeSnorm(a.f[(qc + 1) & 3] * scaler * sign, bits));
v[1] = int16_t(meshopt_quantizeSnorm(a.f[(qc + 2) & 3] * scaler * sign, bits));
v[2] = int16_t(meshopt_quantizeSnorm(a.f[(qc + 3) & 3] * scaler * sign, bits));
v[3] = int16_t((meshopt_quantizeSnorm(1.f, bits) & ~3) | qc);
}
static void encodeExpShared(uint32_t v[3], const Attr& a, int bits)
{
// get exponents from all components
int ex, ey, ez;
frexp(a.f[0], &ex);
frexp(a.f[1], &ey);
frexp(a.f[2], &ez);
// use maximum exponent to encode values; this guarantees that mantissa is [-1, 1]
// note that we additionally scale the mantissa to make it a K-bit signed integer (K-1 bits for magnitude)
int exp = std::max(ex, std::max(ey, ez)) - (bits - 1);
// compute renormalized rounded mantissas for each component
int mx = int(ldexp(a.f[0], -exp) + (a.f[0] >= 0 ? 0.5f : -0.5f));
int my = int(ldexp(a.f[1], -exp) + (a.f[1] >= 0 ? 0.5f : -0.5f));
int mz = int(ldexp(a.f[2], -exp) + (a.f[2] >= 0 ? 0.5f : -0.5f));
int mmask = (1 << 24) - 1;
// encode exponent & mantissa into each resulting value
v[0] = (mx & mmask) | (unsigned(exp) << 24);
v[1] = (my & mmask) | (unsigned(exp) << 24);
v[2] = (mz & mmask) | (unsigned(exp) << 24);
}
static uint32_t encodeExpOne(float v, int bits, int min_exp = -100)
{
// extract exponent
int e;
frexp(v, &e);
// clamp exponent to ensure it's valid after bias
e = std::max(e, min_exp);
// scale the mantissa to make it a K-bit signed integer (K-1 bits for magnitude)
int exp = e - (bits - 1);
// compute renormalized rounded mantissa
int m = int(ldexp(v, -exp) + (v >= 0 ? 0.5f : -0.5f));
int mmask = (1 << 24) - 1;
// encode exponent & mantissa
return (m & mmask) | (unsigned(exp) << 24);
}
static void encodeExpParallel(std::string& bin, const Attr* data, size_t count, int channels, int bits, int min_exp = -100)
{
int exp[4] = {};
for (int k = 0; k < channels; ++k)
exp[k] = min_exp;
for (size_t i = 0; i < count; ++i)
{
const Attr& a = data[i];
// use maximum exponent to encode values; this guarantees that mantissa is [-1, 1]
for (int k = 0; k < channels; ++k)
{
int e;
frexp(a.f[k], &e);
exp[k] = std::max(exp[k], e);
}
}
// scale the mantissa to make it a K-bit signed integer (K-1 bits for magnitude)
for (int k = 0; k < channels; ++k)
exp[k] -= (bits - 1);
for (size_t i = 0; i < count; ++i)
{
const Attr& a = data[i];
uint32_t v[4];
for (int k = 0; k < channels; ++k)
{
// compute renormalized rounded mantissas
int m = int(ldexp(a.f[k], -exp[k]) + (a.f[k] >= 0 ? 0.5f : -0.5f));
// encode exponent & mantissa
int mmask = (1 << 24) - 1;
v[k] = (m & mmask) | (unsigned(exp[k]) << 24);
}
bin.append(reinterpret_cast<const char*>(v), sizeof(uint32_t) * channels);
}
}
static StreamFormat writeVertexStreamRaw(std::string& bin, const Stream& stream, cgltf_type type, size_t components)
{
assert(components >= 1 && components <= 4);
for (size_t i = 0; i < stream.data.size(); ++i)
{
const Attr& a = stream.data[i];
bin.append(reinterpret_cast<const char*>(a.f), sizeof(float) * components);
}
StreamFormat format = {type, cgltf_component_type_r_32f, false, sizeof(float) * components};
return format;
}
static int quantizeColor(float v, int bytebits, int bits)
{
int result = meshopt_quantizeUnorm(v, bytebits);
// replicate the top bit into the low significant bits
const int mask = (1 << (bytebits - bits)) - 1;
return (result & ~mask) | (mask & -(result >> (bytebits - 1)));
}
StreamFormat writeVertexStream(std::string& bin, const Stream& stream, const QuantizationPosition& qp, const QuantizationTexture& qt, const Settings& settings)
{
if (stream.type == cgltf_attribute_type_position)
{
if (!settings.quantize)
return writeVertexStreamRaw(bin, stream, cgltf_type_vec3, 3);
if (settings.pos_float)
{
StreamFormat::Filter filter = settings.compress ? StreamFormat::Filter_Exp : StreamFormat::Filter_None;
if (settings.compressmore)
{
encodeExpParallel(bin, &stream.data[0], stream.data.size(), 3, qp.bits + 1);
}
else
{
for (size_t i = 0; i < stream.data.size(); ++i)
{
const Attr& a = stream.data[i];
if (filter == StreamFormat::Filter_Exp)
{
uint32_t v[3];
v[0] = encodeExpOne(a.f[0], qp.bits + 1);
v[1] = encodeExpOne(a.f[1], qp.bits + 1);
v[2] = encodeExpOne(a.f[2], qp.bits + 1);
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
else
{
float v[3] = {
meshopt_quantizeFloat(a.f[0], qp.bits),
meshopt_quantizeFloat(a.f[1], qp.bits),
meshopt_quantizeFloat(a.f[2], qp.bits)};
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
}
}
StreamFormat format = {cgltf_type_vec3, cgltf_component_type_r_32f, false, 12, filter};
return format;
}
if (stream.target == 0)
{
float pos_rscale = qp.scale == 0.f ? 0.f : 1.f / qp.scale;
for (size_t i = 0; i < stream.data.size(); ++i)
{
const Attr& a = stream.data[i];
uint16_t v[4] = {
uint16_t(meshopt_quantizeUnorm((a.f[0] - qp.offset[0]) * pos_rscale, qp.bits)),
uint16_t(meshopt_quantizeUnorm((a.f[1] - qp.offset[1]) * pos_rscale, qp.bits)),
uint16_t(meshopt_quantizeUnorm((a.f[2] - qp.offset[2]) * pos_rscale, qp.bits)),
0};
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
StreamFormat format = {cgltf_type_vec3, cgltf_component_type_r_16u, qp.normalized, 8};
return format;
}
else
{
float pos_rscale = qp.scale == 0.f ? 0.f : 1.f / qp.scale * (qp.normalized ? 32767.f / 65535.f : 1.f);
int maxv = 0;
for (size_t i = 0; i < stream.data.size(); ++i)
{
const Attr& a = stream.data[i];
maxv = std::max(maxv, meshopt_quantizeUnorm(fabsf(a.f[0]) * pos_rscale, qp.bits));
maxv = std::max(maxv, meshopt_quantizeUnorm(fabsf(a.f[1]) * pos_rscale, qp.bits));
maxv = std::max(maxv, meshopt_quantizeUnorm(fabsf(a.f[2]) * pos_rscale, qp.bits));
}
if (maxv <= 127 && !qp.normalized)
{
for (size_t i = 0; i < stream.data.size(); ++i)
{
const Attr& a = stream.data[i];
int8_t v[4] = {
int8_t((a.f[0] >= 0.f ? 1 : -1) * meshopt_quantizeUnorm(fabsf(a.f[0]) * pos_rscale, qp.bits)),
int8_t((a.f[1] >= 0.f ? 1 : -1) * meshopt_quantizeUnorm(fabsf(a.f[1]) * pos_rscale, qp.bits)),
int8_t((a.f[2] >= 0.f ? 1 : -1) * meshopt_quantizeUnorm(fabsf(a.f[2]) * pos_rscale, qp.bits)),
0};
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
StreamFormat format = {cgltf_type_vec3, cgltf_component_type_r_8, false, 4};
return format;
}
else
{
for (size_t i = 0; i < stream.data.size(); ++i)
{
const Attr& a = stream.data[i];
int16_t v[4] = {
int16_t((a.f[0] >= 0.f ? 1 : -1) * meshopt_quantizeUnorm(fabsf(a.f[0]) * pos_rscale, qp.bits)),
int16_t((a.f[1] >= 0.f ? 1 : -1) * meshopt_quantizeUnorm(fabsf(a.f[1]) * pos_rscale, qp.bits)),
int16_t((a.f[2] >= 0.f ? 1 : -1) * meshopt_quantizeUnorm(fabsf(a.f[2]) * pos_rscale, qp.bits)),
0};
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
StreamFormat format = {cgltf_type_vec3, cgltf_component_type_r_16, qp.normalized, 8};
return format;
}
}
}
else if (stream.type == cgltf_attribute_type_texcoord)
{
if (!settings.quantize)
return writeVertexStreamRaw(bin, stream, cgltf_type_vec2, 2);
if (settings.tex_float)
{
StreamFormat::Filter filter = settings.compress ? StreamFormat::Filter_Exp : StreamFormat::Filter_None;
// expand the encoded range to ensure it covers [0..1) interval
// this can slightly reduce precision but we should not need more precision inside 0..1, and this significantly
// improves compressed size when using encodeExpOne
const int min_exp = 0;
if (settings.compressmore)
{
encodeExpParallel(bin, &stream.data[0], stream.data.size(), 2, qt.bits + 1, min_exp);
}
else
{
for (size_t i = 0; i < stream.data.size(); ++i)
{
const Attr& a = stream.data[i];
if (filter == StreamFormat::Filter_Exp)
{
uint32_t v[2];
v[0] = encodeExpOne(a.f[0], qt.bits + 1, min_exp);
v[1] = encodeExpOne(a.f[1], qt.bits + 1, min_exp);
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
else
{
float v[2] = {
meshopt_quantizeFloat(a.f[0], qt.bits),
meshopt_quantizeFloat(a.f[1], qt.bits)};
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
}
}
StreamFormat format = {cgltf_type_vec2, cgltf_component_type_r_32f, false, 8, filter};
return format;
}
else
{
float uv_rscale[2] = {
qt.scale[0] == 0.f ? 0.f : 1.f / qt.scale[0],
qt.scale[1] == 0.f ? 0.f : 1.f / qt.scale[1],
};
for (size_t i = 0; i < stream.data.size(); ++i)
{
const Attr& a = stream.data[i];
uint16_t v[2] = {
uint16_t(meshopt_quantizeUnorm((a.f[0] - qt.offset[0]) * uv_rscale[0], qt.bits)),
uint16_t(meshopt_quantizeUnorm((a.f[1] - qt.offset[1]) * uv_rscale[1], qt.bits)),
};
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
StreamFormat format = {cgltf_type_vec2, cgltf_component_type_r_16u, qt.normalized, 4};
return format;
}
}
else if (stream.type == cgltf_attribute_type_normal)
{
if (!settings.quantize)
return writeVertexStreamRaw(bin, stream, cgltf_type_vec3, 3);
bool oct = settings.compressmore && stream.target == 0;
int bits = settings.nrm_bits;
StreamFormat::Filter filter = oct ? StreamFormat::Filter_Oct : StreamFormat::Filter_None;
for (size_t i = 0; i < stream.data.size(); ++i)
{
const Attr& a = stream.data[i];
float nx = a.f[0], ny = a.f[1], nz = a.f[2];
if (bits > 8)
{
int16_t v[4];
if (oct)
{
int fu, fv;
encodeOct(fu, fv, nx, ny, nz, bits);
v[0] = int16_t(fu);
v[1] = int16_t(fv);
v[2] = int16_t(meshopt_quantizeSnorm(1.f, bits));
v[3] = 0;
}
else
{
v[0] = int16_t(meshopt_quantizeSnorm(nx, bits));
v[1] = int16_t(meshopt_quantizeSnorm(ny, bits));
v[2] = int16_t(meshopt_quantizeSnorm(nz, bits));
v[3] = 0;
}
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
else
{
int8_t v[4];
if (oct)
{
int fu, fv;
encodeOct(fu, fv, nx, ny, nz, bits);
v[0] = int8_t(fu);
v[1] = int8_t(fv);
v[2] = int8_t(meshopt_quantizeSnorm(1.f, bits));
v[3] = 0;
}
else
{
v[0] = int8_t(meshopt_quantizeSnorm(nx, bits));
v[1] = int8_t(meshopt_quantizeSnorm(ny, bits));
v[2] = int8_t(meshopt_quantizeSnorm(nz, bits));
v[3] = 0;
}
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
}
if (bits > 8)
{
StreamFormat format = {cgltf_type_vec3, cgltf_component_type_r_16, true, 8, filter};
return format;
}
else
{
StreamFormat format = {cgltf_type_vec3, cgltf_component_type_r_8, true, 4, filter};
return format;
}
}
else if (stream.type == cgltf_attribute_type_tangent)
{
if (!settings.quantize)
return writeVertexStreamRaw(bin, stream, cgltf_type_vec4, 4);
bool oct = settings.compressmore && stream.target == 0;
int bits = (settings.nrm_bits > 8) ? 8 : settings.nrm_bits;
StreamFormat::Filter filter = oct ? StreamFormat::Filter_Oct : StreamFormat::Filter_None;
for (size_t i = 0; i < stream.data.size(); ++i)
{
const Attr& a = stream.data[i];
float nx = a.f[0], ny = a.f[1], nz = a.f[2], nw = a.f[3];
int8_t v[4];
if (oct)
{
int fu, fv;
encodeOct(fu, fv, nx, ny, nz, bits);
v[0] = int8_t(fu);
v[1] = int8_t(fv);
v[2] = int8_t(meshopt_quantizeSnorm(1.f, bits));
v[3] = int8_t(meshopt_quantizeSnorm(nw, bits));
}
else
{
v[0] = int8_t(meshopt_quantizeSnorm(nx, bits));
v[1] = int8_t(meshopt_quantizeSnorm(ny, bits));
v[2] = int8_t(meshopt_quantizeSnorm(nz, bits));
v[3] = int8_t(meshopt_quantizeSnorm(nw, bits));
}
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
cgltf_type type = (stream.target == 0) ? cgltf_type_vec4 : cgltf_type_vec3;
StreamFormat format = {type, cgltf_component_type_r_8, true, 4, filter};
return format;
}
else if (stream.type == cgltf_attribute_type_color)
{
int bits = settings.col_bits;
for (size_t i = 0; i < stream.data.size(); ++i)
{
const Attr& a = stream.data[i];
if (bits > 8)
{
uint16_t v[4] = {
uint16_t(quantizeColor(a.f[0], 16, bits)),
uint16_t(quantizeColor(a.f[1], 16, bits)),
uint16_t(quantizeColor(a.f[2], 16, bits)),
uint16_t(quantizeColor(a.f[3], 16, bits))};
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
else
{
uint8_t v[4] = {
uint8_t(quantizeColor(a.f[0], 8, bits)),
uint8_t(quantizeColor(a.f[1], 8, bits)),
uint8_t(quantizeColor(a.f[2], 8, bits)),
uint8_t(quantizeColor(a.f[3], 8, bits))};
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
}
if (bits > 8)
{
StreamFormat format = {cgltf_type_vec4, cgltf_component_type_r_16u, true, 8};
return format;
}
else
{
StreamFormat format = {cgltf_type_vec4, cgltf_component_type_r_8u, true, 4};
return format;
}
}
else if (stream.type == cgltf_attribute_type_weights)
{
for (size_t i = 0; i < stream.data.size(); ++i)
{
const Attr& a = stream.data[i];
float ws = a.f[0] + a.f[1] + a.f[2] + a.f[3];
float wsi = (ws == 0.f) ? 0.f : 1.f / ws;
uint8_t v[4] = {
uint8_t(meshopt_quantizeUnorm(a.f[0] * wsi, 8)),
uint8_t(meshopt_quantizeUnorm(a.f[1] * wsi, 8)),
uint8_t(meshopt_quantizeUnorm(a.f[2] * wsi, 8)),
uint8_t(meshopt_quantizeUnorm(a.f[3] * wsi, 8))};
if (wsi != 0.f)
renormalizeWeights(v);
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
StreamFormat format = {cgltf_type_vec4, cgltf_component_type_r_8u, true, 4};
return format;
}
else if (stream.type == cgltf_attribute_type_joints)
{
unsigned int maxj = 0;
for (size_t i = 0; i < stream.data.size(); ++i)
maxj = std::max(maxj, unsigned(stream.data[i].f[0]));
assert(maxj <= 65535);
if (maxj <= 255)
{
for (size_t i = 0; i < stream.data.size(); ++i)
{
const Attr& a = stream.data[i];
uint8_t v[4] = {
uint8_t(a.f[0]),
uint8_t(a.f[1]),
uint8_t(a.f[2]),
uint8_t(a.f[3])};
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
StreamFormat format = {cgltf_type_vec4, cgltf_component_type_r_8u, false, 4};
return format;
}
else
{
for (size_t i = 0; i < stream.data.size(); ++i)
{
const Attr& a = stream.data[i];
uint16_t v[4] = {
uint16_t(a.f[0]),
uint16_t(a.f[1]),
uint16_t(a.f[2]),
uint16_t(a.f[3])};
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
StreamFormat format = {cgltf_type_vec4, cgltf_component_type_r_16u, false, 8};
return format;
}
}
else if (stream.type == cgltf_attribute_type_custom)
{
// note: _custom is equivalent to _ID, as such the data contains scalar integers
if (!settings.compressmore)
return writeVertexStreamRaw(bin, stream, cgltf_type_scalar, 1);
unsigned int maxv = 0;
for (size_t i = 0; i < stream.data.size(); ++i)
maxv = std::max(maxv, unsigned(stream.data[i].f[0]));
// exp encoding uses a signed mantissa with only 23 significant bits; input glTF encoding may encode indices losslessly up to 2^24
if (maxv >= (1 << 23))
return writeVertexStreamRaw(bin, stream, cgltf_type_scalar, 1);
for (size_t i = 0; i < stream.data.size(); ++i)
{
const Attr& a = stream.data[i];
uint32_t id = uint32_t(a.f[0]);
uint32_t v = id; // exp encoding of integers in [0..2^23-1] range is equivalent to the integer itself
bin.append(reinterpret_cast<const char*>(&v), sizeof(v));
}
StreamFormat format = {cgltf_type_scalar, cgltf_component_type_r_32f, false, 4, StreamFormat::Filter_Exp};
return format;
}
else
{
return writeVertexStreamRaw(bin, stream, cgltf_type_vec4, 4);
}
}
StreamFormat writeIndexStream(std::string& bin, const std::vector<unsigned int>& stream)
{
unsigned int maxi = 0;
for (size_t i = 0; i < stream.size(); ++i)
maxi = std::max(maxi, stream[i]);
// save 16-bit indices if we can; note that we can't use restart index (65535)
if (maxi < 65535)
{
for (size_t i = 0; i < stream.size(); ++i)
{
uint16_t v[1] = {uint16_t(stream[i])};
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
StreamFormat format = {cgltf_type_scalar, cgltf_component_type_r_16u, false, 2};
return format;
}
else
{
for (size_t i = 0; i < stream.size(); ++i)
{
uint32_t v[1] = {stream[i]};
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
StreamFormat format = {cgltf_type_scalar, cgltf_component_type_r_32u, false, 4};
return format;
}
}
StreamFormat writeTimeStream(std::string& bin, const std::vector<float>& data)
{
for (size_t i = 0; i < data.size(); ++i)
{
float v[1] = {data[i]};
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
StreamFormat format = {cgltf_type_scalar, cgltf_component_type_r_32f, false, 4};
return format;
}
StreamFormat writeKeyframeStream(std::string& bin, cgltf_animation_path_type type, const std::vector<Attr>& data, const Settings& settings)
{
if (type == cgltf_animation_path_type_rotation)
{
StreamFormat::Filter filter = settings.compressmore ? StreamFormat::Filter_Quat : StreamFormat::Filter_None;
for (size_t i = 0; i < data.size(); ++i)
{
const Attr& a = data[i];
int16_t v[4];
if (filter == StreamFormat::Filter_Quat)
{
encodeQuat(v, a, settings.rot_bits);
}
else
{
v[0] = int16_t(meshopt_quantizeSnorm(a.f[0], 16));
v[1] = int16_t(meshopt_quantizeSnorm(a.f[1], 16));
v[2] = int16_t(meshopt_quantizeSnorm(a.f[2], 16));
v[3] = int16_t(meshopt_quantizeSnorm(a.f[3], 16));
}
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
StreamFormat format = {cgltf_type_vec4, cgltf_component_type_r_16, true, 8, filter};
return format;
}
else if (type == cgltf_animation_path_type_weights)
{
for (size_t i = 0; i < data.size(); ++i)
{
const Attr& a = data[i];
uint8_t v[1] = {uint8_t(meshopt_quantizeUnorm(a.f[0], 8))};
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
StreamFormat format = {cgltf_type_scalar, cgltf_component_type_r_8u, true, 1};
return format;
}
else if (type == cgltf_animation_path_type_translation || type == cgltf_animation_path_type_scale)
{
StreamFormat::Filter filter = settings.compressmore ? StreamFormat::Filter_Exp : StreamFormat::Filter_None;
int bits = (type == cgltf_animation_path_type_translation) ? settings.trn_bits : settings.scl_bits;
for (size_t i = 0; i < data.size(); ++i)
{
const Attr& a = data[i];
if (filter == StreamFormat::Filter_Exp)
{
uint32_t v[3];
encodeExpShared(v, a, bits);
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
else
{
float v[3] = {a.f[0], a.f[1], a.f[2]};
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
}
StreamFormat format = {cgltf_type_vec3, cgltf_component_type_r_32f, false, 12, filter};
return format;
}
else
{
for (size_t i = 0; i < data.size(); ++i)
{
const Attr& a = data[i];
float v[4] = {a.f[0], a.f[1], a.f[2], a.f[3]};
bin.append(reinterpret_cast<const char*>(v), sizeof(v));
}
StreamFormat format = {cgltf_type_vec4, cgltf_component_type_r_32f, false, 16};
return format;
}
}
void compressVertexStream(std::string& bin, const std::string& data, size_t count, size_t stride)
{
assert(data.size() == count * stride);
std::vector<unsigned char> compressed(meshopt_encodeVertexBufferBound(count, stride));
size_t size = meshopt_encodeVertexBuffer(&compressed[0], compressed.size(), data.c_str(), count, stride);
bin.append(reinterpret_cast<const char*>(&compressed[0]), size);
}
void compressIndexStream(std::string& bin, const std::string& data, size_t count, size_t stride)
{
assert(stride == 2 || stride == 4);
assert(data.size() == count * stride);
assert(count % 3 == 0);
std::vector<unsigned char> compressed(meshopt_encodeIndexBufferBound(count, count));
size_t size = 0;
if (stride == 2)
size = meshopt_encodeIndexBuffer(&compressed[0], compressed.size(), reinterpret_cast<const uint16_t*>(data.c_str()), count);
else
size = meshopt_encodeIndexBuffer(&compressed[0], compressed.size(), reinterpret_cast<const uint32_t*>(data.c_str()), count);
bin.append(reinterpret_cast<const char*>(&compressed[0]), size);
}
void compressIndexSequence(std::string& bin, const std::string& data, size_t count, size_t stride)
{
assert(stride == 2 || stride == 4);
assert(data.size() == count * stride);
std::vector<unsigned char> compressed(meshopt_encodeIndexSequenceBound(count, count));
size_t size = 0;
if (stride == 2)
size = meshopt_encodeIndexSequence(&compressed[0], compressed.size(), reinterpret_cast<const uint16_t*>(data.c_str()), count);