forked from PRML/PRMLT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregressRvmEbCd.m
129 lines (111 loc) · 3.88 KB
/
regressRvmEbCd.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
function [model, llh] = regressRvmEbCd(X, t)
% reference:
% Analysis of sparse Bayesian learning. NIPS(2002). By Faul and Tipping
% Fast marginal likelihood maximisation for sparse Bayesian models.
% AISTATS(2003). by Tipping and Faul
[d,n] = size(X);
xbar = mean(X,2);
tbar = mean(t,2);
X = bsxfun(@minus,X,xbar);
t = bsxfun(@minus,t,tbar);
beta = 1/(0.1*var(t))^2; % beta = 1/sigma^2
alpha = inf(d,1);
S = beta*dot(X,X,2);
Q = beta*(X*t');
Sigma = zeros(0,0);
mu = zeros(0,1);
dim = zeros(0,1);
Phi = zeros(0,n);
iter = 1;
maxiter = 1000;
tol = 1e-4;
llh = -inf(1,maxiter);
indAction = zeros(d,3);
iUse = false(d,1);
s = S; q = Q;
for iter = 2:maxiter
theta = q.^2-s;
iNew = theta>0;
iUpd = (iNew & iUse); % update
iAdd = (iNew~=iUpd); % add
iDel = (iUse~=iUpd); % del
% find the next alpha that maximizes the marginal likilihood
tllh = -inf(d,1); % trial (temptoray) likelihood
if any(iAdd)
tllh(iAdd) = (Q(iAdd).^2-S(iAdd))./S(iAdd)+log(S(iAdd)./(Q(iAdd).^2));
end
if any(iDel)
tllh(iDel) = Q(iDel).^2./(S(iDel)-alpha(iDel))-log1p1(-S(iDel)./alpha(iDel));
end
if any(iUpd)
newAlpha = s(iUpd).^2./theta(iUpd);
oldAlpha = alpha(iUpd);
delta = 1./newAlpha-1./oldAlpha;
tllh(iUpd) = Q(iUpd).^2.*delta./(S(iUpd).*delta+1)-log1p(S(iUpd).*delta);
end
[llh(iter),j] = max(tllh);
if abs(llh(iter)-llh(iter-1)) < tol*llh(iter-1); break; end
indAction(:,1) = iAdd;
indAction(:,2) = iDel;
indAction(:,3) = iUpd;
% update parameters
switch find(indAction(j,:))
case 1 % Add
alpha(j) = s(j)^2/theta(j);
Sigma_jj = 1/(alpha(j)+S(j));
mu_j = Sigma_jj*Q(j);
phi_j = X(j,:);
v = beta*Sigma*(Phi*phi_j'); % temporary vector for common part
off = -beta*Sigma_jj*v;
Sigma = [Sigma+Sigma_jj*(v*v'), off; off', Sigma_jj];
mu = [mu-mu_j*v; mu_j];
e_j = phi_j-v'*Phi;
v = beta*X*e_j';
S = S-Sigma_jj*v.^2;
Q = Q-mu_j*v;
dim = [dim;j]; %#ok<AGROW>
case 2 % del
idx = (dim==j);
alpha(j) = inf;
Sigma_j = Sigma(:,idx);
Sigma_jj = Sigma(idx,idx);
mu_j = mu(idx);
mu(idx) = [];
Sigma(:,idx) = [];
Sigma(idx,:) = [];
kappa = 1/Sigma_jj;
Sigma = Sigma-kappa*(Sigma_j*Sigma_j'); % eq (33)
mu = mu-kappa*mu_j*Sigma_j; % eq (34)
v = beta*X*(Phi'*Sigma_j);
S = S+kappa*v.^2; % eq (35)
Q = Q+kappa*mu_j*v;
dim(idx) = [];
case 3 % update:
idx = (dim==j);
newAlpha = s(j)^2/theta(j);
oldAlpha = alpha(j);
alpha(j) = newAlpha;
Sigma_j = Sigma(:,idx);
Sigma_jj = Sigma(idx,idx);
mu_j = mu(idx);
kappa = 1/(Sigma_jj+1/(newAlpha-oldAlpha));
Sigma = Sigma-kappa*(Sigma_j*Sigma_j'); % eq (33)
mu = mu-kappa*mu_j*Sigma_j; % eq (34)
v = beta*X*(Phi'*Sigma_j);
S = S+kappa*v.^2; % eq (35)
Q = Q+kappa*mu_j*v;
end
iUse = accumarray(dim,true,[d,1],@(x) x); % from Wei Li (pretty cool!)
s = S; q = Q; % p.353 Execrcies 7.17
alphaS = alpha(iUse)-S(iUse);
s(iUse) = alpha(iUse).*S(iUse)./alphaS; % 7.104
q(iUse) = alpha(iUse).*Q(iUse)./alphaS; % 7.105
Phi = X(iUse,:);
beta = (n-numel(dim)+dot(alpha(dim),diag(Sigma)))/sum((t-mu'*Phi).^2);
end
llh = llh(2:iter);
b = tbar-dot(mu,xbar(dim));
model.b = b;
model.w = mu;
model.alpha = alpha;
model.beta = beta;