forked from RobotLocomotion/drake
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontinuous_algebraic_riccati_equation.cc
118 lines (99 loc) · 4.43 KB
/
continuous_algebraic_riccati_equation.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#include "drake/math/continuous_algebraic_riccati_equation.h"
#include <optional>
#include "drake/common/drake_assert.h"
#include "drake/common/is_approx_equal_abstol.h"
#include "drake/systems/primitives/linear_system_internal.h"
namespace drake {
namespace math {
Eigen::MatrixXd ContinuousAlgebraicRiccatiEquation(
const Eigen::Ref<const Eigen::MatrixXd>& A,
const Eigen::Ref<const Eigen::MatrixXd>& B,
const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::LLT<Eigen::MatrixXd>& R_cholesky) {
const Eigen::Index n = B.rows(), m = B.cols();
DRAKE_DEMAND(A.rows() == n && A.cols() == n);
DRAKE_DEMAND(Q.rows() == n && Q.cols() == n);
DRAKE_DEMAND(R_cholesky.matrixL().rows() == m &&
R_cholesky.matrixL().cols() == m);
DRAKE_DEMAND(is_approx_equal_abstol(Q, Q.transpose(), 1e-10));
Eigen::MatrixXd H(2 * n, 2 * n);
H << A, B * R_cholesky.solve(B.transpose()), Q, -A.transpose();
// For the closed-loop system ẋ = (A+BK)x (where K is the LQR controller
// gain), we denote the eigenvalues of A+BK as λ₁, ..., λₙ, then with Q
// satisfying the algebraic Riccati equation, the eigenvalues of H are λ₁,
// ..., λₙ and -λ₁, ..., -λₙ (refer to
// https://stanford.edu/class/ee363/lectures/clqr.pdf for more details). Since
// the LQR gains should stabilize the closed-loop system, we know that the
// real parts of λ₁, ..., λₙ should be strictly negative. Hence half of the
// eigenvalues of H should have strictly negative real parts, and the other
// half have strictly positive real parts.
if (H.determinant() == 0) {
// If H.determinant() is 0, then H must have at least one eigenvalue being
// 0, contradicting to the requirement on H. This is a sufficient condition
// for the system being stabilizable and detectable, and checking the
// determinant is cheap.
throw std::runtime_error(
"ContinuousAlgebraicRiccatiEquation fails. The Hamiltonian is not "
"invertible. Either your (A, B) is not stabilizable, or (Q, A) is not "
"detectable.");
}
// Now we actually check if the system is stabilizable and detectable.
constexpr bool continuous_time = true;
constexpr std::optional<double> threshold = std::nullopt;
if (!systems::internal::IsStabilizable(A, B, continuous_time, threshold)) {
throw std::runtime_error(
"ContinuousAlgebraicRiccatiEquation fails. The system is not "
"stabilizable.");
}
if (!systems::internal::IsDetectable(A, /* C = */ Q, continuous_time,
threshold)) {
throw std::runtime_error(
"ContinuousAlgebraicRiccatiEquation fails. The system is not "
"detectable.");
}
Eigen::MatrixXd Z = H;
Eigen::MatrixXd Z_old;
// these could be options
const double tolerance = 1e-9;
const int max_iterations = 100;
double relative_norm;
size_t iteration = 0;
const double p = static_cast<double>(Z.rows());
do {
Z_old = Z;
// R. Byers. Solving the algebraic Riccati equation with the matrix sign
// function. Linear Algebra Appl., 85:267–279, 1987
// Added determinant scaling to improve convergence (converges in rough half
// the iterations with this)
double ck = std::pow(std::abs(Z.determinant()), -1.0 / p);
Z *= ck;
Z = Z - 0.5 * (Z - Z.inverse());
relative_norm = (Z - Z_old).norm();
iteration++;
} while (iteration < max_iterations && relative_norm > tolerance);
Eigen::MatrixXd W11 = Z.block(0, 0, n, n);
Eigen::MatrixXd W12 = Z.block(0, n, n, n);
Eigen::MatrixXd W21 = Z.block(n, 0, n, n);
Eigen::MatrixXd W22 = Z.block(n, n, n, n);
Eigen::MatrixXd lhs(2 * n, n);
Eigen::MatrixXd rhs(2 * n, n);
Eigen::MatrixXd eye = Eigen::MatrixXd::Identity(n, n);
lhs << W12, W22 + eye;
rhs << W11 + eye, W21;
Eigen::JacobiSVD<Eigen::MatrixXd> svd(
lhs, Eigen::ComputeThinU | Eigen::ComputeThinV);
return svd.solve(rhs);
}
Eigen::MatrixXd ContinuousAlgebraicRiccatiEquation(
const Eigen::Ref<const Eigen::MatrixXd>& A,
const Eigen::Ref<const Eigen::MatrixXd>& B,
const Eigen::Ref<const Eigen::MatrixXd>& Q,
const Eigen::Ref<const Eigen::MatrixXd>& R) {
DRAKE_DEMAND(is_approx_equal_abstol(R, R.transpose(), 1e-10));
Eigen::LLT<Eigen::MatrixXd> R_cholesky(R);
if (R_cholesky.info() != Eigen::Success)
throw std::runtime_error("R must be positive definite");
return ContinuousAlgebraicRiccatiEquation(A, B, Q, R_cholesky);
}
} // namespace math
} // namespace drake