-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanalyze_data.py
241 lines (206 loc) · 7.94 KB
/
analyze_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# %%
import os
import sys
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from sklearn.model_selection import KFold, train_test_split
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVR
from tqdm import tqdm
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'eeg-classes'))
from src.utils.DataLoader import DataLoader # type: ignore
# %%
# Define the base data directory
data_dir = os.path.join(
os.getcwd(),
'data',
'behavioral',
'Emotion_and_Personality_Test_Battery_LEMON',
)
# Get a list of all subjects with EEG data
subj_list = os.listdir(os.path.join(os.getcwd(), 'data', 'EEG_preprocessed'))
# Read all possible labels
df_y = pd.DataFrame()
for file in os.listdir(data_dir):
if file.endswith('.csv'):
# Skip the YFAS file with missing data
if 'YFAS' in file:
continue
df = pd.read_csv(os.path.join(data_dir, file), index_col=0).sort_index()
df_y = pd.concat([df_y, df], axis=1)
# Filter columns that contain 'TICS' in their name
tics_columns = [col for col in df_y.columns if 'TICS' in col]
# Sum the selected columns row-wise and assign to a new column
df_y['TICS_OverallScore'] = df_y[tics_columns].sum(axis=1)
bad_subjs = ['sub-032345', 'sub-032357', 'sub-032450', 'sub-032493', 'sub-032513']
# Clean the NaN values
y = df_y[df_y.index.isin(subj_list)]
y = y.dropna(axis=1, thresh=y.shape[0] - 9)
y = y.dropna(axis=0, thresh=y.shape[1] - 8)
y = y.ffill()
y = y.drop(bad_subjs)
# Calculate the dropped indices
dropped_subjects = df_y.index.difference(y.index)
dropped_subjects = dropped_subjects.union(bad_subjs)
# Load the data
data_loader = DataLoader(os.path.join(os.getcwd(), 'data'))
X_bp_abs = data_loader.load_pkl(os.path.join('feat_mats', 'X_bp_abs_interp'))
X_bp_rel = data_loader.load_pkl(os.path.join('feat_mats', 'X_bp_rel_interp'))
X_welch = data_loader.load_pkl(os.path.join('feat_mats', 'X_welch_interp'))
X_var = data_loader.load_pkl(os.path.join('feat_mats', 'X_var_interp'))
X_logvar = data_loader.load_pkl(os.path.join('feat_mats', 'X_logvar_interp'))
# %%
# Define the feature and label dictionaries
feat_dict = {
'X_bp_rel': X_bp_rel,
# 'X_bp_abs': X_bp_abs,
'X_welch': X_welch,
'X_var': X_var,
'X_logvar': X_logvar,
}
# Initialize KFold with 3 splits
kf = KFold(n_splits=3, shuffle=True)
svr_params = {
'kernel': 'rbf',
}
rf_params = {
'n_estimators': 200,
'max_depth': 4,
'criterion': 'absolute_error',
}
xg_boost_params = {
'n_estimators': 200,
'max_depth': 4,
'learning_rate': 0.01,
'loss': 'absolute_error',
}
for selected_feat in feat_dict.keys():
# Pick the features to use
print('selected_feat: ', selected_feat)
X = pd.DataFrame(
feat_dict[selected_feat],
index=os.listdir(os.path.join(os.getcwd(), 'data', 'EEG_preprocessed')),
)
X = X.drop(dropped_subjects, errors='ignore')
# Create a pipeline
pipe1 = Pipeline([('scaler', StandardScaler()), ('svr', SVR(**svr_params))])
pipe2 = Pipeline(
[('scaler', StandardScaler()), ('rf', RandomForestRegressor(**rf_params))]
)
pipe3 = Pipeline(
[
('scaler', StandardScaler()),
('xg', GradientBoostingRegressor(**xg_boost_params)),
]
)
pipes = [pipe1, pipe2, pipe3]
for pipe in pipes:
print('pipe:', pipe[-1])
r2_train_mean = []
r2_test_mean = []
mae_train_mean = []
mae_test_mean = []
mse_train_mean = []
mse_test_mean = []
r2_train_std = []
r2_test_std = []
mae_train_std = []
mae_test_std = []
mse_train_std = []
mse_test_std = []
r2_train = []
r2_test = []
mae_train = []
mae_test = []
mse_train = []
mse_test = []
labels = []
# Iterate over the columns of the DataFrame
for selected_label in tqdm(y.columns):
r2_train_tmp = []
r2_test_tmp = []
mae_train_tmp = []
mae_test_tmp = []
mse_train_tmp = []
mse_test_tmp = []
y_tmp = y[selected_label]
# Split the data
X_train, X_test, y_train, y_test = train_test_split(
X, y_tmp, train_size=0.8
)
for train_index, test_index in kf.split(X_train):
X_cv_train, X_cv_test = (
X_train.iloc[train_index],
X_train.iloc[test_index],
)
y_cv_train, y_cv_test = (
y_train.iloc[train_index],
y_train.iloc[test_index],
)
# Fit the whole training set
pipe.fit(X_cv_train, y_cv_train)
y_pred_train = pipe.predict(X_cv_train)
y_pred_test = pipe.predict(X_cv_test)
# Store the values for later
r2_train_tmp.append(r2_score(y_cv_train, y_pred_train))
r2_test_tmp.append(r2_score(y_cv_test, y_pred_test))
mae_train_tmp.append(mean_absolute_error(y_cv_train, y_pred_train))
mae_test_tmp.append(mean_absolute_error(y_cv_test, y_pred_test))
mse_train_tmp.append(mean_squared_error(y_cv_train, y_pred_train))
mse_test_tmp.append(mean_squared_error(y_cv_test, y_pred_test))
labels.append(selected_label)
r2_train_mean.append(np.mean(r2_train_tmp))
r2_test_mean.append(np.mean(r2_test_tmp))
mae_train_mean.append(np.mean(mae_train_tmp))
mae_test_mean.append(np.mean(mae_test_tmp))
mse_train_mean.append(np.mean(mse_train_tmp))
mse_test_mean.append(np.mean(mse_test_tmp))
r2_train_std.append(np.std(r2_train_tmp))
r2_test_std.append(np.std(r2_test_tmp))
mae_train_std.append(np.std(mae_train_tmp))
mae_test_std.append(np.std(mae_test_tmp))
mse_train_std.append(np.std(mse_train_tmp))
mse_test_std.append(np.std(mse_test_tmp))
pipe.fit(X_train, y_train)
y_pred_train = pipe.predict(X_train)
y_pred_test = pipe.predict(X_test)
r2_train.append(r2_score(y_train, y_pred_train))
r2_test.append(r2_score(y_test, y_pred_test))
mae_train.append(mean_absolute_error(y_train, y_pred_train))
mae_test.append(mean_absolute_error(y_test, y_pred_test))
mse_train.append(mean_squared_error(y_train, y_pred_train))
mse_test.append(mean_squared_error(y_test, y_pred_test))
# Print the results
result_df = pd.DataFrame(
{
'Label': labels,
'R^2 Mean (Train)': r2_train_mean,
'R^2 STD (Train)': r2_train_std,
'R^2 Mean (CV)': r2_test_mean,
'R^2 STD (CV)': r2_test_std,
'MAE Mean (Train)': mae_train_mean,
'MAE STD (Train)': mae_train_std,
'MAE Mean (CV)': mae_test_mean,
'MAE STD (CV)': mae_test_std,
'MSE Mean (Train)': mse_train_mean,
'MSE STD (Train)': mse_train_std,
'MSE Mean (CV)': mse_test_mean,
'MSE STD (CV)': mse_test_std,
'R^2 (Train)': r2_train,
'R^2 (Test)': r2_test,
'MAE (Train)': mae_train,
'MAE (Test)': mae_test,
'MSE (Train)': mse_train,
'MSE (Test)': mse_test,
}
)
# result_df = result_df.sort_values('R^2 Mean (CV)', ascending=False)
result_df = result_df.sort_values('MAE Mean (CV)', ascending=True)
result_df.to_csv(
os.path.join('results', f'{selected_feat}_{pipe.steps[-1][0]}.csv')
)
# %%