forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsis7019.c
1404 lines (1197 loc) · 37.8 KB
/
sis7019.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0-only
/*
* Driver for SiS7019 Audio Accelerator
*
* Copyright (C) 2004-2007, David Dillow
* Written by David Dillow <[email protected]>
* Inspired by the Trident 4D-WaveDX/NX driver.
*
* All rights reserved.
*/
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/time.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <sound/core.h>
#include <sound/ac97_codec.h>
#include <sound/initval.h>
#include "sis7019.h"
MODULE_AUTHOR("David Dillow <[email protected]>");
MODULE_DESCRIPTION("SiS7019");
MODULE_LICENSE("GPL");
static int index = SNDRV_DEFAULT_IDX1; /* Index 0-MAX */
static char *id = SNDRV_DEFAULT_STR1; /* ID for this card */
static bool enable = 1;
static int codecs = 1;
module_param(index, int, 0444);
MODULE_PARM_DESC(index, "Index value for SiS7019 Audio Accelerator.");
module_param(id, charp, 0444);
MODULE_PARM_DESC(id, "ID string for SiS7019 Audio Accelerator.");
module_param(enable, bool, 0444);
MODULE_PARM_DESC(enable, "Enable SiS7019 Audio Accelerator.");
module_param(codecs, int, 0444);
MODULE_PARM_DESC(codecs, "Set bit to indicate that codec number is expected to be present (default 1)");
static const struct pci_device_id snd_sis7019_ids[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_SI, 0x7019) },
{ 0, }
};
MODULE_DEVICE_TABLE(pci, snd_sis7019_ids);
/* There are three timing modes for the voices.
*
* For both playback and capture, when the buffer is one or two periods long,
* we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
* to let us know when the periods have ended.
*
* When performing playback with more than two periods per buffer, we set
* the "Stop Sample Offset" and tell the hardware to interrupt us when we
* reach it. We then update the offset and continue on until we are
* interrupted for the next period.
*
* Capture channels do not have a SSO, so we allocate a playback channel to
* use as a timer for the capture periods. We use the SSO on the playback
* channel to clock out virtual periods, and adjust the virtual period length
* to maintain synchronization. This algorithm came from the Trident driver.
*
* FIXME: It'd be nice to make use of some of the synth features in the
* hardware, but a woeful lack of documentation is a significant roadblock.
*/
struct voice {
u16 flags;
#define VOICE_IN_USE 1
#define VOICE_CAPTURE 2
#define VOICE_SSO_TIMING 4
#define VOICE_SYNC_TIMING 8
u16 sync_cso;
u16 period_size;
u16 buffer_size;
u16 sync_period_size;
u16 sync_buffer_size;
u32 sso;
u32 vperiod;
struct snd_pcm_substream *substream;
struct voice *timing;
void __iomem *ctrl_base;
void __iomem *wave_base;
void __iomem *sync_base;
int num;
};
/* We need four pages to store our wave parameters during a suspend. If
* we're not doing power management, we still need to allocate a page
* for the silence buffer.
*/
#ifdef CONFIG_PM_SLEEP
#define SIS_SUSPEND_PAGES 4
#else
#define SIS_SUSPEND_PAGES 1
#endif
struct sis7019 {
unsigned long ioport;
void __iomem *ioaddr;
int irq;
int codecs_present;
struct pci_dev *pci;
struct snd_pcm *pcm;
struct snd_card *card;
struct snd_ac97 *ac97[3];
/* Protect against more than one thread hitting the AC97
* registers (in a more polite manner than pounding the hardware
* semaphore)
*/
struct mutex ac97_mutex;
/* voice_lock protects allocation/freeing of the voice descriptions
*/
spinlock_t voice_lock;
struct voice voices[64];
struct voice capture_voice;
/* Allocate pages to store the internal wave state during
* suspends. When we're operating, this can be used as a silence
* buffer for a timing channel.
*/
void *suspend_state[SIS_SUSPEND_PAGES];
int silence_users;
dma_addr_t silence_dma_addr;
};
/* These values are also used by the module param 'codecs' to indicate
* which codecs should be present.
*/
#define SIS_PRIMARY_CODEC_PRESENT 0x0001
#define SIS_SECONDARY_CODEC_PRESENT 0x0002
#define SIS_TERTIARY_CODEC_PRESENT 0x0004
/* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
* documented range of 8-0xfff8 samples. Given that they are 0-based,
* that places our period/buffer range at 9-0xfff9 samples. That makes the
* max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
* max samples / min samples gives us the max periods in a buffer.
*
* We'll add a constraint upon open that limits the period and buffer sample
* size to values that are legal for the hardware.
*/
static const struct snd_pcm_hardware sis_playback_hw_info = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_SYNC_START |
SNDRV_PCM_INFO_RESUME),
.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
.rates = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_CONTINUOUS,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (0xfff9 * 4),
.period_bytes_min = 9,
.period_bytes_max = (0xfff9 * 4),
.periods_min = 1,
.periods_max = (0xfff9 / 9),
};
static const struct snd_pcm_hardware sis_capture_hw_info = {
.info = (SNDRV_PCM_INFO_MMAP |
SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED |
SNDRV_PCM_INFO_BLOCK_TRANSFER |
SNDRV_PCM_INFO_SYNC_START |
SNDRV_PCM_INFO_RESUME),
.formats = (SNDRV_PCM_FMTBIT_S8 | SNDRV_PCM_FMTBIT_U8 |
SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_U16_LE),
.rates = SNDRV_PCM_RATE_48000,
.rate_min = 4000,
.rate_max = 48000,
.channels_min = 1,
.channels_max = 2,
.buffer_bytes_max = (0xfff9 * 4),
.period_bytes_min = 9,
.period_bytes_max = (0xfff9 * 4),
.periods_min = 1,
.periods_max = (0xfff9 / 9),
};
static void sis_update_sso(struct voice *voice, u16 period)
{
void __iomem *base = voice->ctrl_base;
voice->sso += period;
if (voice->sso >= voice->buffer_size)
voice->sso -= voice->buffer_size;
/* Enforce the documented hardware minimum offset */
if (voice->sso < 8)
voice->sso = 8;
/* The SSO is in the upper 16 bits of the register. */
writew(voice->sso & 0xffff, base + SIS_PLAY_DMA_SSO_ESO + 2);
}
static void sis_update_voice(struct voice *voice)
{
if (voice->flags & VOICE_SSO_TIMING) {
sis_update_sso(voice, voice->period_size);
} else if (voice->flags & VOICE_SYNC_TIMING) {
int sync;
/* If we've not hit the end of the virtual period, update
* our records and keep going.
*/
if (voice->vperiod > voice->period_size) {
voice->vperiod -= voice->period_size;
if (voice->vperiod < voice->period_size)
sis_update_sso(voice, voice->vperiod);
else
sis_update_sso(voice, voice->period_size);
return;
}
/* Calculate our relative offset between the target and
* the actual CSO value. Since we're operating in a loop,
* if the value is more than half way around, we can
* consider ourselves wrapped.
*/
sync = voice->sync_cso;
sync -= readw(voice->sync_base + SIS_CAPTURE_DMA_FORMAT_CSO);
if (sync > (voice->sync_buffer_size / 2))
sync -= voice->sync_buffer_size;
/* If sync is positive, then we interrupted too early, and
* we'll need to come back in a few samples and try again.
* There's a minimum wait, as it takes some time for the DMA
* engine to startup, etc...
*/
if (sync > 0) {
if (sync < 16)
sync = 16;
sis_update_sso(voice, sync);
return;
}
/* Ok, we interrupted right on time, or (hopefully) just
* a bit late. We'll adjst our next waiting period based
* on how close we got.
*
* We need to stay just behind the actual channel to ensure
* it really is past a period when we get our interrupt --
* otherwise we'll fall into the early code above and have
* a minimum wait time, which makes us quite late here,
* eating into the user's time to refresh the buffer, esp.
* if using small periods.
*
* If we're less than 9 samples behind, we're on target.
* Otherwise, shorten the next vperiod by the amount we've
* been delayed.
*/
if (sync > -9)
voice->vperiod = voice->sync_period_size + 1;
else
voice->vperiod = voice->sync_period_size + sync + 10;
if (voice->vperiod < voice->buffer_size) {
sis_update_sso(voice, voice->vperiod);
voice->vperiod = 0;
} else
sis_update_sso(voice, voice->period_size);
sync = voice->sync_cso + voice->sync_period_size;
if (sync >= voice->sync_buffer_size)
sync -= voice->sync_buffer_size;
voice->sync_cso = sync;
}
snd_pcm_period_elapsed(voice->substream);
}
static void sis_voice_irq(u32 status, struct voice *voice)
{
int bit;
while (status) {
bit = __ffs(status);
status >>= bit + 1;
voice += bit;
sis_update_voice(voice);
voice++;
}
}
static irqreturn_t sis_interrupt(int irq, void *dev)
{
struct sis7019 *sis = dev;
unsigned long io = sis->ioport;
struct voice *voice;
u32 intr, status;
/* We only use the DMA interrupts, and we don't enable any other
* source of interrupts. But, it is possible to see an interrupt
* status that didn't actually interrupt us, so eliminate anything
* we're not expecting to avoid falsely claiming an IRQ, and an
* ensuing endless loop.
*/
intr = inl(io + SIS_GISR);
intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
if (!intr)
return IRQ_NONE;
do {
status = inl(io + SIS_PISR_A);
if (status) {
sis_voice_irq(status, sis->voices);
outl(status, io + SIS_PISR_A);
}
status = inl(io + SIS_PISR_B);
if (status) {
sis_voice_irq(status, &sis->voices[32]);
outl(status, io + SIS_PISR_B);
}
status = inl(io + SIS_RISR);
if (status) {
voice = &sis->capture_voice;
if (!voice->timing)
snd_pcm_period_elapsed(voice->substream);
outl(status, io + SIS_RISR);
}
outl(intr, io + SIS_GISR);
intr = inl(io + SIS_GISR);
intr &= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS |
SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS;
} while (intr);
return IRQ_HANDLED;
}
static u32 sis_rate_to_delta(unsigned int rate)
{
u32 delta;
/* This was copied from the trident driver, but it seems its gotten
* around a bit... nevertheless, it works well.
*
* We special case 44100 and 8000 since rounding with the equation
* does not give us an accurate enough value. For 11025 and 22050
* the equation gives us the best answer. All other frequencies will
* also use the equation. JDW
*/
if (rate == 44100)
delta = 0xeb3;
else if (rate == 8000)
delta = 0x2ab;
else if (rate == 48000)
delta = 0x1000;
else
delta = DIV_ROUND_CLOSEST(rate << 12, 48000) & 0x0000ffff;
return delta;
}
static void __sis_map_silence(struct sis7019 *sis)
{
/* Helper function: must hold sis->voice_lock on entry */
if (!sis->silence_users)
sis->silence_dma_addr = dma_map_single(&sis->pci->dev,
sis->suspend_state[0],
4096, DMA_TO_DEVICE);
sis->silence_users++;
}
static void __sis_unmap_silence(struct sis7019 *sis)
{
/* Helper function: must hold sis->voice_lock on entry */
sis->silence_users--;
if (!sis->silence_users)
dma_unmap_single(&sis->pci->dev, sis->silence_dma_addr, 4096,
DMA_TO_DEVICE);
}
static void sis_free_voice(struct sis7019 *sis, struct voice *voice)
{
unsigned long flags;
spin_lock_irqsave(&sis->voice_lock, flags);
if (voice->timing) {
__sis_unmap_silence(sis);
voice->timing->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING |
VOICE_SYNC_TIMING);
voice->timing = NULL;
}
voice->flags &= ~(VOICE_IN_USE | VOICE_SSO_TIMING | VOICE_SYNC_TIMING);
spin_unlock_irqrestore(&sis->voice_lock, flags);
}
static struct voice *__sis_alloc_playback_voice(struct sis7019 *sis)
{
/* Must hold the voice_lock on entry */
struct voice *voice;
int i;
for (i = 0; i < 64; i++) {
voice = &sis->voices[i];
if (voice->flags & VOICE_IN_USE)
continue;
voice->flags |= VOICE_IN_USE;
goto found_one;
}
voice = NULL;
found_one:
return voice;
}
static struct voice *sis_alloc_playback_voice(struct sis7019 *sis)
{
struct voice *voice;
unsigned long flags;
spin_lock_irqsave(&sis->voice_lock, flags);
voice = __sis_alloc_playback_voice(sis);
spin_unlock_irqrestore(&sis->voice_lock, flags);
return voice;
}
static int sis_alloc_timing_voice(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct sis7019 *sis = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct voice *voice = runtime->private_data;
unsigned int period_size, buffer_size;
unsigned long flags;
int needed;
/* If there are one or two periods per buffer, we don't need a
* timing voice, as we can use the capture channel's interrupts
* to clock out the periods.
*/
period_size = params_period_size(hw_params);
buffer_size = params_buffer_size(hw_params);
needed = (period_size != buffer_size &&
period_size != (buffer_size / 2));
if (needed && !voice->timing) {
spin_lock_irqsave(&sis->voice_lock, flags);
voice->timing = __sis_alloc_playback_voice(sis);
if (voice->timing)
__sis_map_silence(sis);
spin_unlock_irqrestore(&sis->voice_lock, flags);
if (!voice->timing)
return -ENOMEM;
voice->timing->substream = substream;
} else if (!needed && voice->timing) {
sis_free_voice(sis, voice);
voice->timing = NULL;
}
return 0;
}
static int sis_playback_open(struct snd_pcm_substream *substream)
{
struct sis7019 *sis = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct voice *voice;
voice = sis_alloc_playback_voice(sis);
if (!voice)
return -EAGAIN;
voice->substream = substream;
runtime->private_data = voice;
runtime->hw = sis_playback_hw_info;
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
9, 0xfff9);
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
9, 0xfff9);
snd_pcm_set_sync(substream);
return 0;
}
static int sis_substream_close(struct snd_pcm_substream *substream)
{
struct sis7019 *sis = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct voice *voice = runtime->private_data;
sis_free_voice(sis, voice);
return 0;
}
static int sis_pcm_playback_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct voice *voice = runtime->private_data;
void __iomem *ctrl_base = voice->ctrl_base;
void __iomem *wave_base = voice->wave_base;
u32 format, dma_addr, control, sso_eso, delta, reg;
u16 leo;
/* We rely on the PCM core to ensure that the parameters for this
* substream do not change on us while we're programming the HW.
*/
format = 0;
if (snd_pcm_format_width(runtime->format) == 8)
format |= SIS_PLAY_DMA_FORMAT_8BIT;
if (!snd_pcm_format_signed(runtime->format))
format |= SIS_PLAY_DMA_FORMAT_UNSIGNED;
if (runtime->channels == 1)
format |= SIS_PLAY_DMA_FORMAT_MONO;
/* The baseline setup is for a single period per buffer, and
* we add bells and whistles as needed from there.
*/
dma_addr = runtime->dma_addr;
leo = runtime->buffer_size - 1;
control = leo | SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_LEO;
sso_eso = leo;
if (runtime->period_size == (runtime->buffer_size / 2)) {
control |= SIS_PLAY_DMA_INTR_AT_MLP;
} else if (runtime->period_size != runtime->buffer_size) {
voice->flags |= VOICE_SSO_TIMING;
voice->sso = runtime->period_size - 1;
voice->period_size = runtime->period_size;
voice->buffer_size = runtime->buffer_size;
control &= ~SIS_PLAY_DMA_INTR_AT_LEO;
control |= SIS_PLAY_DMA_INTR_AT_SSO;
sso_eso |= (runtime->period_size - 1) << 16;
}
delta = sis_rate_to_delta(runtime->rate);
/* Ok, we're ready to go, set up the channel.
*/
writel(format, ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
writel(dma_addr, ctrl_base + SIS_PLAY_DMA_BASE);
writel(control, ctrl_base + SIS_PLAY_DMA_CONTROL);
writel(sso_eso, ctrl_base + SIS_PLAY_DMA_SSO_ESO);
for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
writel(0, wave_base + reg);
writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
wave_base + SIS_WAVE_CHANNEL_CONTROL);
/* Force PCI writes to post. */
readl(ctrl_base);
return 0;
}
static int sis_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
{
struct sis7019 *sis = snd_pcm_substream_chip(substream);
unsigned long io = sis->ioport;
struct snd_pcm_substream *s;
struct voice *voice;
void *chip;
int starting;
u32 record = 0;
u32 play[2] = { 0, 0 };
/* No locks needed, as the PCM core will hold the locks on the
* substreams, and the HW will only start/stop the indicated voices
* without changing the state of the others.
*/
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
case SNDRV_PCM_TRIGGER_RESUME:
starting = 1;
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
case SNDRV_PCM_TRIGGER_SUSPEND:
starting = 0;
break;
default:
return -EINVAL;
}
snd_pcm_group_for_each_entry(s, substream) {
/* Make sure it is for us... */
chip = snd_pcm_substream_chip(s);
if (chip != sis)
continue;
voice = s->runtime->private_data;
if (voice->flags & VOICE_CAPTURE) {
record |= 1 << voice->num;
voice = voice->timing;
}
/* voice could be NULL if this a recording stream, and it
* doesn't have an external timing channel.
*/
if (voice)
play[voice->num / 32] |= 1 << (voice->num & 0x1f);
snd_pcm_trigger_done(s, substream);
}
if (starting) {
if (record)
outl(record, io + SIS_RECORD_START_REG);
if (play[0])
outl(play[0], io + SIS_PLAY_START_A_REG);
if (play[1])
outl(play[1], io + SIS_PLAY_START_B_REG);
} else {
if (record)
outl(record, io + SIS_RECORD_STOP_REG);
if (play[0])
outl(play[0], io + SIS_PLAY_STOP_A_REG);
if (play[1])
outl(play[1], io + SIS_PLAY_STOP_B_REG);
}
return 0;
}
static snd_pcm_uframes_t sis_pcm_pointer(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct voice *voice = runtime->private_data;
u32 cso;
cso = readl(voice->ctrl_base + SIS_PLAY_DMA_FORMAT_CSO);
cso &= 0xffff;
return cso;
}
static int sis_capture_open(struct snd_pcm_substream *substream)
{
struct sis7019 *sis = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct voice *voice = &sis->capture_voice;
unsigned long flags;
/* FIXME: The driver only supports recording from one channel
* at the moment, but it could support more.
*/
spin_lock_irqsave(&sis->voice_lock, flags);
if (voice->flags & VOICE_IN_USE)
voice = NULL;
else
voice->flags |= VOICE_IN_USE;
spin_unlock_irqrestore(&sis->voice_lock, flags);
if (!voice)
return -EAGAIN;
voice->substream = substream;
runtime->private_data = voice;
runtime->hw = sis_capture_hw_info;
runtime->hw.rates = sis->ac97[0]->rates[AC97_RATES_ADC];
snd_pcm_limit_hw_rates(runtime);
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_PERIOD_SIZE,
9, 0xfff9);
snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
9, 0xfff9);
snd_pcm_set_sync(substream);
return 0;
}
static int sis_capture_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *hw_params)
{
struct sis7019 *sis = snd_pcm_substream_chip(substream);
int rc;
rc = snd_ac97_set_rate(sis->ac97[0], AC97_PCM_LR_ADC_RATE,
params_rate(hw_params));
if (rc)
goto out;
rc = sis_alloc_timing_voice(substream, hw_params);
out:
return rc;
}
static void sis_prepare_timing_voice(struct voice *voice,
struct snd_pcm_substream *substream)
{
struct sis7019 *sis = snd_pcm_substream_chip(substream);
struct snd_pcm_runtime *runtime = substream->runtime;
struct voice *timing = voice->timing;
void __iomem *play_base = timing->ctrl_base;
void __iomem *wave_base = timing->wave_base;
u16 buffer_size, period_size;
u32 format, control, sso_eso, delta;
u32 vperiod, sso, reg;
/* Set our initial buffer and period as large as we can given a
* single page of silence.
*/
buffer_size = 4096 / runtime->channels;
buffer_size /= snd_pcm_format_size(runtime->format, 1);
period_size = buffer_size;
/* Initially, we want to interrupt just a bit behind the end of
* the period we're clocking out. 12 samples seems to give a good
* delay.
*
* We want to spread our interrupts throughout the virtual period,
* so that we don't end up with two interrupts back to back at the
* end -- this helps minimize the effects of any jitter. Adjust our
* clocking period size so that the last period is at least a fourth
* of a full period.
*
* This is all moot if we don't need to use virtual periods.
*/
vperiod = runtime->period_size + 12;
if (vperiod > period_size) {
u16 tail = vperiod % period_size;
u16 quarter_period = period_size / 4;
if (tail && tail < quarter_period) {
u16 loops = vperiod / period_size;
tail = quarter_period - tail;
tail += loops - 1;
tail /= loops;
period_size -= tail;
}
sso = period_size - 1;
} else {
/* The initial period will fit inside the buffer, so we
* don't need to use virtual periods -- disable them.
*/
period_size = runtime->period_size;
sso = vperiod - 1;
vperiod = 0;
}
/* The interrupt handler implements the timing synchronization, so
* setup its state.
*/
timing->flags |= VOICE_SYNC_TIMING;
timing->sync_base = voice->ctrl_base;
timing->sync_cso = runtime->period_size;
timing->sync_period_size = runtime->period_size;
timing->sync_buffer_size = runtime->buffer_size;
timing->period_size = period_size;
timing->buffer_size = buffer_size;
timing->sso = sso;
timing->vperiod = vperiod;
/* Using unsigned samples with the all-zero silence buffer
* forces the output to the lower rail, killing playback.
* So ignore unsigned vs signed -- it doesn't change the timing.
*/
format = 0;
if (snd_pcm_format_width(runtime->format) == 8)
format = SIS_CAPTURE_DMA_FORMAT_8BIT;
if (runtime->channels == 1)
format |= SIS_CAPTURE_DMA_FORMAT_MONO;
control = timing->buffer_size - 1;
control |= SIS_PLAY_DMA_LOOP | SIS_PLAY_DMA_INTR_AT_SSO;
sso_eso = timing->buffer_size - 1;
sso_eso |= timing->sso << 16;
delta = sis_rate_to_delta(runtime->rate);
/* We've done the math, now configure the channel.
*/
writel(format, play_base + SIS_PLAY_DMA_FORMAT_CSO);
writel(sis->silence_dma_addr, play_base + SIS_PLAY_DMA_BASE);
writel(control, play_base + SIS_PLAY_DMA_CONTROL);
writel(sso_eso, play_base + SIS_PLAY_DMA_SSO_ESO);
for (reg = 0; reg < SIS_WAVE_SIZE; reg += 4)
writel(0, wave_base + reg);
writel(SIS_WAVE_GENERAL_WAVE_VOLUME, wave_base + SIS_WAVE_GENERAL);
writel(delta << 16, wave_base + SIS_WAVE_GENERAL_ARTICULATION);
writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE |
SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE |
SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE,
wave_base + SIS_WAVE_CHANNEL_CONTROL);
}
static int sis_pcm_capture_prepare(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
struct voice *voice = runtime->private_data;
void __iomem *rec_base = voice->ctrl_base;
u32 format, dma_addr, control;
u16 leo;
/* We rely on the PCM core to ensure that the parameters for this
* substream do not change on us while we're programming the HW.
*/
format = 0;
if (snd_pcm_format_width(runtime->format) == 8)
format = SIS_CAPTURE_DMA_FORMAT_8BIT;
if (!snd_pcm_format_signed(runtime->format))
format |= SIS_CAPTURE_DMA_FORMAT_UNSIGNED;
if (runtime->channels == 1)
format |= SIS_CAPTURE_DMA_FORMAT_MONO;
dma_addr = runtime->dma_addr;
leo = runtime->buffer_size - 1;
control = leo | SIS_CAPTURE_DMA_LOOP;
/* If we've got more than two periods per buffer, then we have
* use a timing voice to clock out the periods. Otherwise, we can
* use the capture channel's interrupts.
*/
if (voice->timing) {
sis_prepare_timing_voice(voice, substream);
} else {
control |= SIS_CAPTURE_DMA_INTR_AT_LEO;
if (runtime->period_size != runtime->buffer_size)
control |= SIS_CAPTURE_DMA_INTR_AT_MLP;
}
writel(format, rec_base + SIS_CAPTURE_DMA_FORMAT_CSO);
writel(dma_addr, rec_base + SIS_CAPTURE_DMA_BASE);
writel(control, rec_base + SIS_CAPTURE_DMA_CONTROL);
/* Force the writes to post. */
readl(rec_base);
return 0;
}
static const struct snd_pcm_ops sis_playback_ops = {
.open = sis_playback_open,
.close = sis_substream_close,
.prepare = sis_pcm_playback_prepare,
.trigger = sis_pcm_trigger,
.pointer = sis_pcm_pointer,
};
static const struct snd_pcm_ops sis_capture_ops = {
.open = sis_capture_open,
.close = sis_substream_close,
.hw_params = sis_capture_hw_params,
.prepare = sis_pcm_capture_prepare,
.trigger = sis_pcm_trigger,
.pointer = sis_pcm_pointer,
};
static int sis_pcm_create(struct sis7019 *sis)
{
struct snd_pcm *pcm;
int rc;
/* We have 64 voices, and the driver currently records from
* only one channel, though that could change in the future.
*/
rc = snd_pcm_new(sis->card, "SiS7019", 0, 64, 1, &pcm);
if (rc)
return rc;
pcm->private_data = sis;
strcpy(pcm->name, "SiS7019");
sis->pcm = pcm;
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &sis_playback_ops);
snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &sis_capture_ops);
/* Try to preallocate some memory, but it's not the end of the
* world if this fails.
*/
snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
&sis->pci->dev, 64*1024, 128*1024);
return 0;
}
static unsigned short sis_ac97_rw(struct sis7019 *sis, int codec, u32 cmd)
{
unsigned long io = sis->ioport;
unsigned short val = 0xffff;
u16 status;
u16 rdy;
int count;
static const u16 codec_ready[3] = {
SIS_AC97_STATUS_CODEC_READY,
SIS_AC97_STATUS_CODEC2_READY,
SIS_AC97_STATUS_CODEC3_READY,
};
rdy = codec_ready[codec];
/* Get the AC97 semaphore -- software first, so we don't spin
* pounding out IO reads on the hardware semaphore...
*/
mutex_lock(&sis->ac97_mutex);
count = 0xffff;
while ((inw(io + SIS_AC97_SEMA) & SIS_AC97_SEMA_BUSY) && --count)
udelay(1);
if (!count)
goto timeout;
/* ... and wait for any outstanding commands to complete ...
*/
count = 0xffff;
do {
status = inw(io + SIS_AC97_STATUS);
if ((status & rdy) && !(status & SIS_AC97_STATUS_BUSY))
break;
udelay(1);
} while (--count);
if (!count)
goto timeout_sema;
/* ... before sending our command and waiting for it to finish ...
*/
outl(cmd, io + SIS_AC97_CMD);
udelay(10);
count = 0xffff;
while ((inw(io + SIS_AC97_STATUS) & SIS_AC97_STATUS_BUSY) && --count)
udelay(1);
/* ... and reading the results (if any).
*/
val = inl(io + SIS_AC97_CMD) >> 16;
timeout_sema:
outl(SIS_AC97_SEMA_RELEASE, io + SIS_AC97_SEMA);
timeout:
mutex_unlock(&sis->ac97_mutex);
if (!count) {
dev_err(&sis->pci->dev, "ac97 codec %d timeout cmd 0x%08x\n",
codec, cmd);
}
return val;
}
static void sis_ac97_write(struct snd_ac97 *ac97, unsigned short reg,
unsigned short val)
{
static const u32 cmd[3] = {
SIS_AC97_CMD_CODEC_WRITE,
SIS_AC97_CMD_CODEC2_WRITE,
SIS_AC97_CMD_CODEC3_WRITE,
};
sis_ac97_rw(ac97->private_data, ac97->num,
(val << 16) | (reg << 8) | cmd[ac97->num]);
}
static unsigned short sis_ac97_read(struct snd_ac97 *ac97, unsigned short reg)
{
static const u32 cmd[3] = {
SIS_AC97_CMD_CODEC_READ,
SIS_AC97_CMD_CODEC2_READ,
SIS_AC97_CMD_CODEC3_READ,
};
return sis_ac97_rw(ac97->private_data, ac97->num,
(reg << 8) | cmd[ac97->num]);
}
static int sis_mixer_create(struct sis7019 *sis)
{
struct snd_ac97_bus *bus;
struct snd_ac97_template ac97;
static const struct snd_ac97_bus_ops ops = {
.write = sis_ac97_write,
.read = sis_ac97_read,
};
int rc;
memset(&ac97, 0, sizeof(ac97));
ac97.private_data = sis;
rc = snd_ac97_bus(sis->card, 0, &ops, NULL, &bus);
if (!rc && sis->codecs_present & SIS_PRIMARY_CODEC_PRESENT)
rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[0]);
ac97.num = 1;
if (!rc && (sis->codecs_present & SIS_SECONDARY_CODEC_PRESENT))
rc = snd_ac97_mixer(bus, &ac97, &sis->ac97[1]);
ac97.num = 2;