forked from torvalds/linux
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathkmemleak.c
2138 lines (1889 loc) · 59.6 KB
/
kmemleak.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// SPDX-License-Identifier: GPL-2.0-only
/*
* mm/kmemleak.c
*
* Copyright (C) 2008 ARM Limited
* Written by Catalin Marinas <[email protected]>
*
* For more information on the algorithm and kmemleak usage, please see
* Documentation/dev-tools/kmemleak.rst.
*
* Notes on locking
* ----------------
*
* The following locks and mutexes are used by kmemleak:
*
* - kmemleak_lock (rwlock): protects the object_list modifications and
* accesses to the object_tree_root. The object_list is the main list
* holding the metadata (struct kmemleak_object) for the allocated memory
* blocks. The object_tree_root is a red black tree used to look-up
* metadata based on a pointer to the corresponding memory block. The
* kmemleak_object structures are added to the object_list and
* object_tree_root in the create_object() function called from the
* kmemleak_alloc() callback and removed in delete_object() called from the
* kmemleak_free() callback
* - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
* the metadata (e.g. count) are protected by this lock. Note that some
* members of this structure may be protected by other means (atomic or
* kmemleak_lock). This lock is also held when scanning the corresponding
* memory block to avoid the kernel freeing it via the kmemleak_free()
* callback. This is less heavyweight than holding a global lock like
* kmemleak_lock during scanning
* - scan_mutex (mutex): ensures that only one thread may scan the memory for
* unreferenced objects at a time. The gray_list contains the objects which
* are already referenced or marked as false positives and need to be
* scanned. This list is only modified during a scanning episode when the
* scan_mutex is held. At the end of a scan, the gray_list is always empty.
* Note that the kmemleak_object.use_count is incremented when an object is
* added to the gray_list and therefore cannot be freed. This mutex also
* prevents multiple users of the "kmemleak" debugfs file together with
* modifications to the memory scanning parameters including the scan_thread
* pointer
*
* Locks and mutexes are acquired/nested in the following order:
*
* scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
*
* No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
* regions.
*
* The kmemleak_object structures have a use_count incremented or decremented
* using the get_object()/put_object() functions. When the use_count becomes
* 0, this count can no longer be incremented and put_object() schedules the
* kmemleak_object freeing via an RCU callback. All calls to the get_object()
* function must be protected by rcu_read_lock() to avoid accessing a freed
* structure.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/list.h>
#include <linux/sched/signal.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/jiffies.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/kthread.h>
#include <linux/rbtree.h>
#include <linux/fs.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/cpumask.h>
#include <linux/spinlock.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/rcupdate.h>
#include <linux/stacktrace.h>
#include <linux/cache.h>
#include <linux/percpu.h>
#include <linux/memblock.h>
#include <linux/pfn.h>
#include <linux/mmzone.h>
#include <linux/slab.h>
#include <linux/thread_info.h>
#include <linux/err.h>
#include <linux/uaccess.h>
#include <linux/string.h>
#include <linux/nodemask.h>
#include <linux/mm.h>
#include <linux/workqueue.h>
#include <linux/crc32.h>
#include <asm/sections.h>
#include <asm/processor.h>
#include <linux/atomic.h>
#include <linux/kasan.h>
#include <linux/kmemleak.h>
#include <linux/memory_hotplug.h>
/*
* Kmemleak configuration and common defines.
*/
#define MAX_TRACE 16 /* stack trace length */
#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
#define SECS_FIRST_SCAN 60 /* delay before the first scan */
#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
#define BYTES_PER_POINTER sizeof(void *)
/* GFP bitmask for kmemleak internal allocations */
#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
__GFP_NORETRY | __GFP_NOMEMALLOC | \
__GFP_NOWARN | __GFP_NOFAIL)
/* scanning area inside a memory block */
struct kmemleak_scan_area {
struct hlist_node node;
unsigned long start;
size_t size;
};
#define KMEMLEAK_GREY 0
#define KMEMLEAK_BLACK -1
/*
* Structure holding the metadata for each allocated memory block.
* Modifications to such objects should be made while holding the
* object->lock. Insertions or deletions from object_list, gray_list or
* rb_node are already protected by the corresponding locks or mutex (see
* the notes on locking above). These objects are reference-counted
* (use_count) and freed using the RCU mechanism.
*/
struct kmemleak_object {
spinlock_t lock;
unsigned int flags; /* object status flags */
struct list_head object_list;
struct list_head gray_list;
struct rb_node rb_node;
struct rcu_head rcu; /* object_list lockless traversal */
/* object usage count; object freed when use_count == 0 */
atomic_t use_count;
unsigned long pointer;
size_t size;
/* pass surplus references to this pointer */
unsigned long excess_ref;
/* minimum number of a pointers found before it is considered leak */
int min_count;
/* the total number of pointers found pointing to this object */
int count;
/* checksum for detecting modified objects */
u32 checksum;
/* memory ranges to be scanned inside an object (empty for all) */
struct hlist_head area_list;
unsigned long trace[MAX_TRACE];
unsigned int trace_len;
unsigned long jiffies; /* creation timestamp */
pid_t pid; /* pid of the current task */
char comm[TASK_COMM_LEN]; /* executable name */
};
/* flag representing the memory block allocation status */
#define OBJECT_ALLOCATED (1 << 0)
/* flag set after the first reporting of an unreference object */
#define OBJECT_REPORTED (1 << 1)
/* flag set to not scan the object */
#define OBJECT_NO_SCAN (1 << 2)
#define HEX_PREFIX " "
/* number of bytes to print per line; must be 16 or 32 */
#define HEX_ROW_SIZE 16
/* number of bytes to print at a time (1, 2, 4, 8) */
#define HEX_GROUP_SIZE 1
/* include ASCII after the hex output */
#define HEX_ASCII 1
/* max number of lines to be printed */
#define HEX_MAX_LINES 2
/* the list of all allocated objects */
static LIST_HEAD(object_list);
/* the list of gray-colored objects (see color_gray comment below) */
static LIST_HEAD(gray_list);
/* search tree for object boundaries */
static struct rb_root object_tree_root = RB_ROOT;
/* rw_lock protecting the access to object_list and object_tree_root */
static DEFINE_RWLOCK(kmemleak_lock);
/* allocation caches for kmemleak internal data */
static struct kmem_cache *object_cache;
static struct kmem_cache *scan_area_cache;
/* set if tracing memory operations is enabled */
static int kmemleak_enabled;
/* same as above but only for the kmemleak_free() callback */
static int kmemleak_free_enabled;
/* set in the late_initcall if there were no errors */
static int kmemleak_initialized;
/* enables or disables early logging of the memory operations */
static int kmemleak_early_log = 1;
/* set if a kmemleak warning was issued */
static int kmemleak_warning;
/* set if a fatal kmemleak error has occurred */
static int kmemleak_error;
/* minimum and maximum address that may be valid pointers */
static unsigned long min_addr = ULONG_MAX;
static unsigned long max_addr;
static struct task_struct *scan_thread;
/* used to avoid reporting of recently allocated objects */
static unsigned long jiffies_min_age;
static unsigned long jiffies_last_scan;
/* delay between automatic memory scannings */
static signed long jiffies_scan_wait;
/* enables or disables the task stacks scanning */
static int kmemleak_stack_scan = 1;
/* protects the memory scanning, parameters and debug/kmemleak file access */
static DEFINE_MUTEX(scan_mutex);
/* setting kmemleak=on, will set this var, skipping the disable */
static int kmemleak_skip_disable;
/* If there are leaks that can be reported */
static bool kmemleak_found_leaks;
static bool kmemleak_verbose;
module_param_named(verbose, kmemleak_verbose, bool, 0600);
/*
* Early object allocation/freeing logging. Kmemleak is initialized after the
* kernel allocator. However, both the kernel allocator and kmemleak may
* allocate memory blocks which need to be tracked. Kmemleak defines an
* arbitrary buffer to hold the allocation/freeing information before it is
* fully initialized.
*/
/* kmemleak operation type for early logging */
enum {
KMEMLEAK_ALLOC,
KMEMLEAK_ALLOC_PERCPU,
KMEMLEAK_FREE,
KMEMLEAK_FREE_PART,
KMEMLEAK_FREE_PERCPU,
KMEMLEAK_NOT_LEAK,
KMEMLEAK_IGNORE,
KMEMLEAK_SCAN_AREA,
KMEMLEAK_NO_SCAN,
KMEMLEAK_SET_EXCESS_REF
};
/*
* Structure holding the information passed to kmemleak callbacks during the
* early logging.
*/
struct early_log {
int op_type; /* kmemleak operation type */
int min_count; /* minimum reference count */
const void *ptr; /* allocated/freed memory block */
union {
size_t size; /* memory block size */
unsigned long excess_ref; /* surplus reference passing */
};
unsigned long trace[MAX_TRACE]; /* stack trace */
unsigned int trace_len; /* stack trace length */
};
/* early logging buffer and current position */
static struct early_log
early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
static int crt_early_log __initdata;
static void kmemleak_disable(void);
/*
* Print a warning and dump the stack trace.
*/
#define kmemleak_warn(x...) do { \
pr_warn(x); \
dump_stack(); \
kmemleak_warning = 1; \
} while (0)
/*
* Macro invoked when a serious kmemleak condition occurred and cannot be
* recovered from. Kmemleak will be disabled and further allocation/freeing
* tracing no longer available.
*/
#define kmemleak_stop(x...) do { \
kmemleak_warn(x); \
kmemleak_disable(); \
} while (0)
#define warn_or_seq_printf(seq, fmt, ...) do { \
if (seq) \
seq_printf(seq, fmt, ##__VA_ARGS__); \
else \
pr_warn(fmt, ##__VA_ARGS__); \
} while (0)
static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
int rowsize, int groupsize, const void *buf,
size_t len, bool ascii)
{
if (seq)
seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
buf, len, ascii);
else
print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
rowsize, groupsize, buf, len, ascii);
}
/*
* Printing of the objects hex dump to the seq file. The number of lines to be
* printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
* actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
* with the object->lock held.
*/
static void hex_dump_object(struct seq_file *seq,
struct kmemleak_object *object)
{
const u8 *ptr = (const u8 *)object->pointer;
size_t len;
/* limit the number of lines to HEX_MAX_LINES */
len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
kasan_disable_current();
warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
kasan_enable_current();
}
/*
* Object colors, encoded with count and min_count:
* - white - orphan object, not enough references to it (count < min_count)
* - gray - not orphan, not marked as false positive (min_count == 0) or
* sufficient references to it (count >= min_count)
* - black - ignore, it doesn't contain references (e.g. text section)
* (min_count == -1). No function defined for this color.
* Newly created objects don't have any color assigned (object->count == -1)
* before the next memory scan when they become white.
*/
static bool color_white(const struct kmemleak_object *object)
{
return object->count != KMEMLEAK_BLACK &&
object->count < object->min_count;
}
static bool color_gray(const struct kmemleak_object *object)
{
return object->min_count != KMEMLEAK_BLACK &&
object->count >= object->min_count;
}
/*
* Objects are considered unreferenced only if their color is white, they have
* not be deleted and have a minimum age to avoid false positives caused by
* pointers temporarily stored in CPU registers.
*/
static bool unreferenced_object(struct kmemleak_object *object)
{
return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
time_before_eq(object->jiffies + jiffies_min_age,
jiffies_last_scan);
}
/*
* Printing of the unreferenced objects information to the seq file. The
* print_unreferenced function must be called with the object->lock held.
*/
static void print_unreferenced(struct seq_file *seq,
struct kmemleak_object *object)
{
int i;
unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
object->pointer, object->size);
warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
object->comm, object->pid, object->jiffies,
msecs_age / 1000, msecs_age % 1000);
hex_dump_object(seq, object);
warn_or_seq_printf(seq, " backtrace:\n");
for (i = 0; i < object->trace_len; i++) {
void *ptr = (void *)object->trace[i];
warn_or_seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
}
}
/*
* Print the kmemleak_object information. This function is used mainly for
* debugging special cases when kmemleak operations. It must be called with
* the object->lock held.
*/
static void dump_object_info(struct kmemleak_object *object)
{
pr_notice("Object 0x%08lx (size %zu):\n",
object->pointer, object->size);
pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
object->comm, object->pid, object->jiffies);
pr_notice(" min_count = %d\n", object->min_count);
pr_notice(" count = %d\n", object->count);
pr_notice(" flags = 0x%x\n", object->flags);
pr_notice(" checksum = %u\n", object->checksum);
pr_notice(" backtrace:\n");
stack_trace_print(object->trace, object->trace_len, 4);
}
/*
* Look-up a memory block metadata (kmemleak_object) in the object search
* tree based on a pointer value. If alias is 0, only values pointing to the
* beginning of the memory block are allowed. The kmemleak_lock must be held
* when calling this function.
*/
static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
{
struct rb_node *rb = object_tree_root.rb_node;
while (rb) {
struct kmemleak_object *object =
rb_entry(rb, struct kmemleak_object, rb_node);
if (ptr < object->pointer)
rb = object->rb_node.rb_left;
else if (object->pointer + object->size <= ptr)
rb = object->rb_node.rb_right;
else if (object->pointer == ptr || alias)
return object;
else {
kmemleak_warn("Found object by alias at 0x%08lx\n",
ptr);
dump_object_info(object);
break;
}
}
return NULL;
}
/*
* Increment the object use_count. Return 1 if successful or 0 otherwise. Note
* that once an object's use_count reached 0, the RCU freeing was already
* registered and the object should no longer be used. This function must be
* called under the protection of rcu_read_lock().
*/
static int get_object(struct kmemleak_object *object)
{
return atomic_inc_not_zero(&object->use_count);
}
/*
* RCU callback to free a kmemleak_object.
*/
static void free_object_rcu(struct rcu_head *rcu)
{
struct hlist_node *tmp;
struct kmemleak_scan_area *area;
struct kmemleak_object *object =
container_of(rcu, struct kmemleak_object, rcu);
/*
* Once use_count is 0 (guaranteed by put_object), there is no other
* code accessing this object, hence no need for locking.
*/
hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
hlist_del(&area->node);
kmem_cache_free(scan_area_cache, area);
}
kmem_cache_free(object_cache, object);
}
/*
* Decrement the object use_count. Once the count is 0, free the object using
* an RCU callback. Since put_object() may be called via the kmemleak_free() ->
* delete_object() path, the delayed RCU freeing ensures that there is no
* recursive call to the kernel allocator. Lock-less RCU object_list traversal
* is also possible.
*/
static void put_object(struct kmemleak_object *object)
{
if (!atomic_dec_and_test(&object->use_count))
return;
/* should only get here after delete_object was called */
WARN_ON(object->flags & OBJECT_ALLOCATED);
call_rcu(&object->rcu, free_object_rcu);
}
/*
* Look up an object in the object search tree and increase its use_count.
*/
static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
{
unsigned long flags;
struct kmemleak_object *object;
rcu_read_lock();
read_lock_irqsave(&kmemleak_lock, flags);
object = lookup_object(ptr, alias);
read_unlock_irqrestore(&kmemleak_lock, flags);
/* check whether the object is still available */
if (object && !get_object(object))
object = NULL;
rcu_read_unlock();
return object;
}
/*
* Look up an object in the object search tree and remove it from both
* object_tree_root and object_list. The returned object's use_count should be
* at least 1, as initially set by create_object().
*/
static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
{
unsigned long flags;
struct kmemleak_object *object;
write_lock_irqsave(&kmemleak_lock, flags);
object = lookup_object(ptr, alias);
if (object) {
rb_erase(&object->rb_node, &object_tree_root);
list_del_rcu(&object->object_list);
}
write_unlock_irqrestore(&kmemleak_lock, flags);
return object;
}
/*
* Save stack trace to the given array of MAX_TRACE size.
*/
static int __save_stack_trace(unsigned long *trace)
{
return stack_trace_save(trace, MAX_TRACE, 2);
}
/*
* Create the metadata (struct kmemleak_object) corresponding to an allocated
* memory block and add it to the object_list and object_tree_root.
*/
static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
int min_count, gfp_t gfp)
{
unsigned long flags;
struct kmemleak_object *object, *parent;
struct rb_node **link, *rb_parent;
unsigned long untagged_ptr;
object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
if (!object) {
pr_warn("Cannot allocate a kmemleak_object structure\n");
kmemleak_disable();
return NULL;
}
INIT_LIST_HEAD(&object->object_list);
INIT_LIST_HEAD(&object->gray_list);
INIT_HLIST_HEAD(&object->area_list);
spin_lock_init(&object->lock);
atomic_set(&object->use_count, 1);
object->flags = OBJECT_ALLOCATED;
object->pointer = ptr;
object->size = size;
object->excess_ref = 0;
object->min_count = min_count;
object->count = 0; /* white color initially */
object->jiffies = jiffies;
object->checksum = 0;
/* task information */
if (in_irq()) {
object->pid = 0;
strncpy(object->comm, "hardirq", sizeof(object->comm));
} else if (in_softirq()) {
object->pid = 0;
strncpy(object->comm, "softirq", sizeof(object->comm));
} else {
object->pid = current->pid;
/*
* There is a small chance of a race with set_task_comm(),
* however using get_task_comm() here may cause locking
* dependency issues with current->alloc_lock. In the worst
* case, the command line is not correct.
*/
strncpy(object->comm, current->comm, sizeof(object->comm));
}
/* kernel backtrace */
object->trace_len = __save_stack_trace(object->trace);
write_lock_irqsave(&kmemleak_lock, flags);
untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
min_addr = min(min_addr, untagged_ptr);
max_addr = max(max_addr, untagged_ptr + size);
link = &object_tree_root.rb_node;
rb_parent = NULL;
while (*link) {
rb_parent = *link;
parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
if (ptr + size <= parent->pointer)
link = &parent->rb_node.rb_left;
else if (parent->pointer + parent->size <= ptr)
link = &parent->rb_node.rb_right;
else {
kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
ptr);
/*
* No need for parent->lock here since "parent" cannot
* be freed while the kmemleak_lock is held.
*/
dump_object_info(parent);
kmem_cache_free(object_cache, object);
object = NULL;
goto out;
}
}
rb_link_node(&object->rb_node, rb_parent, link);
rb_insert_color(&object->rb_node, &object_tree_root);
list_add_tail_rcu(&object->object_list, &object_list);
out:
write_unlock_irqrestore(&kmemleak_lock, flags);
return object;
}
/*
* Mark the object as not allocated and schedule RCU freeing via put_object().
*/
static void __delete_object(struct kmemleak_object *object)
{
unsigned long flags;
WARN_ON(!(object->flags & OBJECT_ALLOCATED));
WARN_ON(atomic_read(&object->use_count) < 1);
/*
* Locking here also ensures that the corresponding memory block
* cannot be freed when it is being scanned.
*/
spin_lock_irqsave(&object->lock, flags);
object->flags &= ~OBJECT_ALLOCATED;
spin_unlock_irqrestore(&object->lock, flags);
put_object(object);
}
/*
* Look up the metadata (struct kmemleak_object) corresponding to ptr and
* delete it.
*/
static void delete_object_full(unsigned long ptr)
{
struct kmemleak_object *object;
object = find_and_remove_object(ptr, 0);
if (!object) {
#ifdef DEBUG
kmemleak_warn("Freeing unknown object at 0x%08lx\n",
ptr);
#endif
return;
}
__delete_object(object);
}
/*
* Look up the metadata (struct kmemleak_object) corresponding to ptr and
* delete it. If the memory block is partially freed, the function may create
* additional metadata for the remaining parts of the block.
*/
static void delete_object_part(unsigned long ptr, size_t size)
{
struct kmemleak_object *object;
unsigned long start, end;
object = find_and_remove_object(ptr, 1);
if (!object) {
#ifdef DEBUG
kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
ptr, size);
#endif
return;
}
/*
* Create one or two objects that may result from the memory block
* split. Note that partial freeing is only done by free_bootmem() and
* this happens before kmemleak_init() is called. The path below is
* only executed during early log recording in kmemleak_init(), so
* GFP_KERNEL is enough.
*/
start = object->pointer;
end = object->pointer + object->size;
if (ptr > start)
create_object(start, ptr - start, object->min_count,
GFP_KERNEL);
if (ptr + size < end)
create_object(ptr + size, end - ptr - size, object->min_count,
GFP_KERNEL);
__delete_object(object);
}
static void __paint_it(struct kmemleak_object *object, int color)
{
object->min_count = color;
if (color == KMEMLEAK_BLACK)
object->flags |= OBJECT_NO_SCAN;
}
static void paint_it(struct kmemleak_object *object, int color)
{
unsigned long flags;
spin_lock_irqsave(&object->lock, flags);
__paint_it(object, color);
spin_unlock_irqrestore(&object->lock, flags);
}
static void paint_ptr(unsigned long ptr, int color)
{
struct kmemleak_object *object;
object = find_and_get_object(ptr, 0);
if (!object) {
kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
ptr,
(color == KMEMLEAK_GREY) ? "Grey" :
(color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
return;
}
paint_it(object, color);
put_object(object);
}
/*
* Mark an object permanently as gray-colored so that it can no longer be
* reported as a leak. This is used in general to mark a false positive.
*/
static void make_gray_object(unsigned long ptr)
{
paint_ptr(ptr, KMEMLEAK_GREY);
}
/*
* Mark the object as black-colored so that it is ignored from scans and
* reporting.
*/
static void make_black_object(unsigned long ptr)
{
paint_ptr(ptr, KMEMLEAK_BLACK);
}
/*
* Add a scanning area to the object. If at least one such area is added,
* kmemleak will only scan these ranges rather than the whole memory block.
*/
static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
{
unsigned long flags;
struct kmemleak_object *object;
struct kmemleak_scan_area *area;
object = find_and_get_object(ptr, 1);
if (!object) {
kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
ptr);
return;
}
area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
if (!area) {
pr_warn("Cannot allocate a scan area\n");
goto out;
}
spin_lock_irqsave(&object->lock, flags);
if (size == SIZE_MAX) {
size = object->pointer + object->size - ptr;
} else if (ptr + size > object->pointer + object->size) {
kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
dump_object_info(object);
kmem_cache_free(scan_area_cache, area);
goto out_unlock;
}
INIT_HLIST_NODE(&area->node);
area->start = ptr;
area->size = size;
hlist_add_head(&area->node, &object->area_list);
out_unlock:
spin_unlock_irqrestore(&object->lock, flags);
out:
put_object(object);
}
/*
* Any surplus references (object already gray) to 'ptr' are passed to
* 'excess_ref'. This is used in the vmalloc() case where a pointer to
* vm_struct may be used as an alternative reference to the vmalloc'ed object
* (see free_thread_stack()).
*/
static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
{
unsigned long flags;
struct kmemleak_object *object;
object = find_and_get_object(ptr, 0);
if (!object) {
kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
ptr);
return;
}
spin_lock_irqsave(&object->lock, flags);
object->excess_ref = excess_ref;
spin_unlock_irqrestore(&object->lock, flags);
put_object(object);
}
/*
* Set the OBJECT_NO_SCAN flag for the object corresponding to the give
* pointer. Such object will not be scanned by kmemleak but references to it
* are searched.
*/
static void object_no_scan(unsigned long ptr)
{
unsigned long flags;
struct kmemleak_object *object;
object = find_and_get_object(ptr, 0);
if (!object) {
kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
return;
}
spin_lock_irqsave(&object->lock, flags);
object->flags |= OBJECT_NO_SCAN;
spin_unlock_irqrestore(&object->lock, flags);
put_object(object);
}
/*
* Log an early kmemleak_* call to the early_log buffer. These calls will be
* processed later once kmemleak is fully initialized.
*/
static void __init log_early(int op_type, const void *ptr, size_t size,
int min_count)
{
unsigned long flags;
struct early_log *log;
if (kmemleak_error) {
/* kmemleak stopped recording, just count the requests */
crt_early_log++;
return;
}
if (crt_early_log >= ARRAY_SIZE(early_log)) {
crt_early_log++;
kmemleak_disable();
return;
}
/*
* There is no need for locking since the kernel is still in UP mode
* at this stage. Disabling the IRQs is enough.
*/
local_irq_save(flags);
log = &early_log[crt_early_log];
log->op_type = op_type;
log->ptr = ptr;
log->size = size;
log->min_count = min_count;
log->trace_len = __save_stack_trace(log->trace);
crt_early_log++;
local_irq_restore(flags);
}
/*
* Log an early allocated block and populate the stack trace.
*/
static void early_alloc(struct early_log *log)
{
struct kmemleak_object *object;
unsigned long flags;
int i;
if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
return;
/*
* RCU locking needed to ensure object is not freed via put_object().
*/
rcu_read_lock();
object = create_object((unsigned long)log->ptr, log->size,
log->min_count, GFP_ATOMIC);
if (!object)
goto out;
spin_lock_irqsave(&object->lock, flags);
for (i = 0; i < log->trace_len; i++)
object->trace[i] = log->trace[i];
object->trace_len = log->trace_len;
spin_unlock_irqrestore(&object->lock, flags);
out:
rcu_read_unlock();
}
/*
* Log an early allocated block and populate the stack trace.
*/
static void early_alloc_percpu(struct early_log *log)
{
unsigned int cpu;
const void __percpu *ptr = log->ptr;
for_each_possible_cpu(cpu) {
log->ptr = per_cpu_ptr(ptr, cpu);
early_alloc(log);
}
}
/**
* kmemleak_alloc - register a newly allocated object
* @ptr: pointer to beginning of the object
* @size: size of the object
* @min_count: minimum number of references to this object. If during memory
* scanning a number of references less than @min_count is found,
* the object is reported as a memory leak. If @min_count is 0,
* the object is never reported as a leak. If @min_count is -1,
* the object is ignored (not scanned and not reported as a leak)
* @gfp: kmalloc() flags used for kmemleak internal memory allocations
*
* This function is called from the kernel allocators when a new object
* (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
*/
void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
gfp_t gfp)
{
pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
if (kmemleak_enabled && ptr && !IS_ERR(ptr))
create_object((unsigned long)ptr, size, min_count, gfp);
else if (kmemleak_early_log)
log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
}
EXPORT_SYMBOL_GPL(kmemleak_alloc);
/**
* kmemleak_alloc_percpu - register a newly allocated __percpu object
* @ptr: __percpu pointer to beginning of the object
* @size: size of the object
* @gfp: flags used for kmemleak internal memory allocations
*
* This function is called from the kernel percpu allocator when a new object
* (memory block) is allocated (alloc_percpu).
*/
void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
gfp_t gfp)
{
unsigned int cpu;
pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
/*
* Percpu allocations are only scanned and not reported as leaks
* (min_count is set to 0).
*/
if (kmemleak_enabled && ptr && !IS_ERR(ptr))
for_each_possible_cpu(cpu)
create_object((unsigned long)per_cpu_ptr(ptr, cpu),
size, 0, gfp);
else if (kmemleak_early_log)
log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
}
EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
/**
* kmemleak_vmalloc - register a newly vmalloc'ed object
* @area: pointer to vm_struct
* @size: size of the object
* @gfp: __vmalloc() flags used for kmemleak internal memory allocations
*
* This function is called from the vmalloc() kernel allocator when a new
* object (memory block) is allocated.
*/
void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
{
pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
/*
* A min_count = 2 is needed because vm_struct contains a reference to
* the virtual address of the vmalloc'ed block.
*/
if (kmemleak_enabled) {