Skip to content

Commit

Permalink
kcov: remote coverage support
Browse files Browse the repository at this point in the history
Patch series " kcov: collect coverage from usb and vhost", v3.

This patchset extends kcov to allow collecting coverage from backgound
kernel threads.  This extension requires custom annotations for each of
the places where coverage collection is desired.  This patchset
implements this for hub events in the USB subsystem and for vhost
workers.  See the first patch description for details about the kcov
extension.  The other two patches apply this kcov extension to USB and
vhost.

Examples of other subsystems that might potentially benefit from this
when custom annotations are added (the list is based on
process_one_work() callers for bugs recently reported by syzbot):

1. fs: writeback wb_workfn() worker,
2. net: addrconf_dad_work()/addrconf_verify_work() workers,
3. net: neigh_periodic_work() worker,
4. net/p9: p9_write_work()/p9_read_work() workers,
5. block: blk_mq_run_work_fn() worker.

These patches have been used to enable coverage-guided USB fuzzing with
syzkaller for the last few years, see the details here:

  https://github.com/google/syzkaller/blob/master/docs/linux/external_fuzzing_usb.md

This patchset has been pushed to the public Linux kernel Gerrit
instance:

  https://linux-review.googlesource.com/c/linux/kernel/git/torvalds/linux/+/1524

This patch (of 3):

Add background thread coverage collection ability to kcov.

With KCOV_ENABLE coverage is collected only for syscalls that are issued
from the current process.  With KCOV_REMOTE_ENABLE it's possible to
collect coverage for arbitrary parts of the kernel code, provided that
those parts are annotated with kcov_remote_start()/kcov_remote_stop().

This allows to collect coverage from two types of kernel background
threads: the global ones, that are spawned during kernel boot in a
limited number of instances (e.g.  one USB hub_event() worker thread is
spawned per USB HCD); and the local ones, that are spawned when a user
interacts with some kernel interface (e.g.  vhost workers).

To enable collecting coverage from a global background thread, a unique
global handle must be assigned and passed to the corresponding
kcov_remote_start() call.  Then a userspace process can pass a list of
such handles to the KCOV_REMOTE_ENABLE ioctl in the handles array field
of the kcov_remote_arg struct.  This will attach the used kcov device to
the code sections, that are referenced by those handles.

Since there might be many local background threads spawned from
different userspace processes, we can't use a single global handle per
annotation.  Instead, the userspace process passes a non-zero handle
through the common_handle field of the kcov_remote_arg struct.  This
common handle gets saved to the kcov_handle field in the current
task_struct and needs to be passed to the newly spawned threads via
custom annotations.  Those threads should in turn be annotated with
kcov_remote_start()/kcov_remote_stop().

Internally kcov stores handles as u64 integers.  The top byte of a
handle is used to denote the id of a subsystem that this handle belongs
to, and the lower 4 bytes are used to denote the id of a thread instance
within that subsystem.  A reserved value 0 is used as a subsystem id for
common handles as they don't belong to a particular subsystem.  The
bytes 4-7 are currently reserved and must be zero.  In the future the
number of bytes used for the subsystem or handle ids might be increased.

When a particular userspace process collects coverage by via a common
handle, kcov will collect coverage for each code section that is
annotated to use the common handle obtained as kcov_handle from the
current task_struct.  However non common handles allow to collect
coverage selectively from different subsystems.

Link: http://lkml.kernel.org/r/e90e315426a384207edbec1d6aa89e43008e4caf.1572366574.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <[email protected]>
Cc: Dmitry Vyukov <[email protected]>
Cc: Greg Kroah-Hartman <[email protected]>
Cc: Alan Stern <[email protected]>
Cc: "Michael S. Tsirkin" <[email protected]>
Cc: Jason Wang <[email protected]>
Cc: Arnd Bergmann <[email protected]>
Cc: Steven Rostedt <[email protected]>
Cc: David Windsor <[email protected]>
Cc: Elena Reshetova <[email protected]>
Cc: Anders Roxell <[email protected]>
Cc: Alexander Potapenko <[email protected]>
Cc: Marco Elver <[email protected]>
Signed-off-by: Andrew Morton <[email protected]>
Signed-off-by: Linus Torvalds <[email protected]>
  • Loading branch information
xairy authored and torvalds committed Dec 5, 2019
1 parent 6d13de1 commit eec028c
Show file tree
Hide file tree
Showing 5 changed files with 700 additions and 35 deletions.
129 changes: 129 additions & 0 deletions Documentation/dev-tools/kcov.rst
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ Profiling data will only become accessible once debugfs has been mounted::

Coverage collection
-------------------

The following program demonstrates coverage collection from within a test
program using kcov:

Expand Down Expand Up @@ -128,6 +129,7 @@ only need to enable coverage (disable happens automatically on thread end).

Comparison operands collection
------------------------------

Comparison operands collection is similar to coverage collection:

.. code-block:: c
Expand Down Expand Up @@ -202,3 +204,130 @@ Comparison operands collection is similar to coverage collection:
Note that the kcov modes (coverage collection or comparison operands) are
mutually exclusive.

Remote coverage collection
--------------------------

With KCOV_ENABLE coverage is collected only for syscalls that are issued
from the current process. With KCOV_REMOTE_ENABLE it's possible to collect
coverage for arbitrary parts of the kernel code, provided that those parts
are annotated with kcov_remote_start()/kcov_remote_stop().

This allows to collect coverage from two types of kernel background
threads: the global ones, that are spawned during kernel boot in a limited
number of instances (e.g. one USB hub_event() worker thread is spawned per
USB HCD); and the local ones, that are spawned when a user interacts with
some kernel interface (e.g. vhost workers).

To enable collecting coverage from a global background thread, a unique
global handle must be assigned and passed to the corresponding
kcov_remote_start() call. Then a userspace process can pass a list of such
handles to the KCOV_REMOTE_ENABLE ioctl in the handles array field of the
kcov_remote_arg struct. This will attach the used kcov device to the code
sections, that are referenced by those handles.

Since there might be many local background threads spawned from different
userspace processes, we can't use a single global handle per annotation.
Instead, the userspace process passes a non-zero handle through the
common_handle field of the kcov_remote_arg struct. This common handle gets
saved to the kcov_handle field in the current task_struct and needs to be
passed to the newly spawned threads via custom annotations. Those threads
should in turn be annotated with kcov_remote_start()/kcov_remote_stop().

Internally kcov stores handles as u64 integers. The top byte of a handle
is used to denote the id of a subsystem that this handle belongs to, and
the lower 4 bytes are used to denote the id of a thread instance within
that subsystem. A reserved value 0 is used as a subsystem id for common
handles as they don't belong to a particular subsystem. The bytes 4-7 are
currently reserved and must be zero. In the future the number of bytes
used for the subsystem or handle ids might be increased.

When a particular userspace proccess collects coverage by via a common
handle, kcov will collect coverage for each code section that is annotated
to use the common handle obtained as kcov_handle from the current
task_struct. However non common handles allow to collect coverage
selectively from different subsystems.

.. code-block:: c
struct kcov_remote_arg {
unsigned trace_mode;
unsigned area_size;
unsigned num_handles;
uint64_t common_handle;
uint64_t handles[0];
};
#define KCOV_INIT_TRACE _IOR('c', 1, unsigned long)
#define KCOV_DISABLE _IO('c', 101)
#define KCOV_REMOTE_ENABLE _IOW('c', 102, struct kcov_remote_arg)
#define COVER_SIZE (64 << 10)
#define KCOV_TRACE_PC 0
#define KCOV_SUBSYSTEM_COMMON (0x00ull << 56)
#define KCOV_SUBSYSTEM_USB (0x01ull << 56)
#define KCOV_SUBSYSTEM_MASK (0xffull << 56)
#define KCOV_INSTANCE_MASK (0xffffffffull)
static inline __u64 kcov_remote_handle(__u64 subsys, __u64 inst)
{
if (subsys & ~KCOV_SUBSYSTEM_MASK || inst & ~KCOV_INSTANCE_MASK)
return 0;
return subsys | inst;
}
#define KCOV_COMMON_ID 0x42
#define KCOV_USB_BUS_NUM 1
int main(int argc, char **argv)
{
int fd;
unsigned long *cover, n, i;
struct kcov_remote_arg *arg;
fd = open("/sys/kernel/debug/kcov", O_RDWR);
if (fd == -1)
perror("open"), exit(1);
if (ioctl(fd, KCOV_INIT_TRACE, COVER_SIZE))
perror("ioctl"), exit(1);
cover = (unsigned long*)mmap(NULL, COVER_SIZE * sizeof(unsigned long),
PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0);
if ((void*)cover == MAP_FAILED)
perror("mmap"), exit(1);
/* Enable coverage collection via common handle and from USB bus #1. */
arg = calloc(1, sizeof(*arg) + sizeof(uint64_t));
if (!arg)
perror("calloc"), exit(1);
arg->trace_mode = KCOV_TRACE_PC;
arg->area_size = COVER_SIZE;
arg->num_handles = 1;
arg->common_handle = kcov_remote_handle(KCOV_SUBSYSTEM_COMMON,
KCOV_COMMON_ID);
arg->handles[0] = kcov_remote_handle(KCOV_SUBSYSTEM_USB,
KCOV_USB_BUS_NUM);
if (ioctl(fd, KCOV_REMOTE_ENABLE, arg))
perror("ioctl"), free(arg), exit(1);
free(arg);
/*
* Here the user needs to trigger execution of a kernel code section
* that is either annotated with the common handle, or to trigger some
* activity on USB bus #1.
*/
sleep(2);
n = __atomic_load_n(&cover[0], __ATOMIC_RELAXED);
for (i = 0; i < n; i++)
printf("0x%lx\n", cover[i + 1]);
if (ioctl(fd, KCOV_DISABLE, 0))
perror("ioctl"), exit(1);
if (munmap(cover, COVER_SIZE * sizeof(unsigned long)))
perror("munmap"), exit(1);
if (close(fd))
perror("close"), exit(1);
return 0;
}
23 changes: 23 additions & 0 deletions include/linux/kcov.h
Original file line number Diff line number Diff line change
Expand Up @@ -37,12 +37,35 @@ do { \
(t)->kcov_mode &= ~KCOV_IN_CTXSW; \
} while (0)

/* See Documentation/dev-tools/kcov.rst for usage details. */
void kcov_remote_start(u64 handle);
void kcov_remote_stop(void);
u64 kcov_common_handle(void);

static inline void kcov_remote_start_common(u64 id)
{
kcov_remote_start(kcov_remote_handle(KCOV_SUBSYSTEM_COMMON, id));
}

static inline void kcov_remote_start_usb(u64 id)
{
kcov_remote_start(kcov_remote_handle(KCOV_SUBSYSTEM_USB, id));
}

#else

static inline void kcov_task_init(struct task_struct *t) {}
static inline void kcov_task_exit(struct task_struct *t) {}
static inline void kcov_prepare_switch(struct task_struct *t) {}
static inline void kcov_finish_switch(struct task_struct *t) {}
static inline void kcov_remote_start(u64 handle) {}
static inline void kcov_remote_stop(void) {}
static inline u64 kcov_common_handle(void)
{
return 0;
}
static inline void kcov_remote_start_common(u64 id) {}
static inline void kcov_remote_start_usb(u64 id) {}

#endif /* CONFIG_KCOV */
#endif /* _LINUX_KCOV_H */
8 changes: 8 additions & 0 deletions include/linux/sched.h
Original file line number Diff line number Diff line change
Expand Up @@ -1210,6 +1210,8 @@ struct task_struct {
#endif /* CONFIG_TRACING */

#ifdef CONFIG_KCOV
/* See kernel/kcov.c for more details. */

/* Coverage collection mode enabled for this task (0 if disabled): */
unsigned int kcov_mode;

Expand All @@ -1221,6 +1223,12 @@ struct task_struct {

/* KCOV descriptor wired with this task or NULL: */
struct kcov *kcov;

/* KCOV common handle for remote coverage collection: */
u64 kcov_handle;

/* KCOV sequence number: */
int kcov_sequence;
#endif

#ifdef CONFIG_MEMCG
Expand Down
28 changes: 28 additions & 0 deletions include/uapi/linux/kcov.h
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,24 @@

#include <linux/types.h>

/*
* Argument for KCOV_REMOTE_ENABLE ioctl, see Documentation/dev-tools/kcov.rst
* and the comment before kcov_remote_start() for usage details.
*/
struct kcov_remote_arg {
unsigned int trace_mode; /* KCOV_TRACE_PC or KCOV_TRACE_CMP */
unsigned int area_size; /* Length of coverage buffer in words */
unsigned int num_handles; /* Size of handles array */
__u64 common_handle;
__u64 handles[0];
};

#define KCOV_REMOTE_MAX_HANDLES 0x100

#define KCOV_INIT_TRACE _IOR('c', 1, unsigned long)
#define KCOV_ENABLE _IO('c', 100)
#define KCOV_DISABLE _IO('c', 101)
#define KCOV_REMOTE_ENABLE _IOW('c', 102, struct kcov_remote_arg)

enum {
/*
Expand All @@ -32,4 +47,17 @@ enum {
#define KCOV_CMP_SIZE(n) ((n) << 1)
#define KCOV_CMP_MASK KCOV_CMP_SIZE(3)

#define KCOV_SUBSYSTEM_COMMON (0x00ull << 56)
#define KCOV_SUBSYSTEM_USB (0x01ull << 56)

#define KCOV_SUBSYSTEM_MASK (0xffull << 56)
#define KCOV_INSTANCE_MASK (0xffffffffull)

static inline __u64 kcov_remote_handle(__u64 subsys, __u64 inst)
{
if (subsys & ~KCOV_SUBSYSTEM_MASK || inst & ~KCOV_INSTANCE_MASK)
return 0;
return subsys | inst;
}

#endif /* _LINUX_KCOV_IOCTLS_H */
Loading

0 comments on commit eec028c

Please sign in to comment.