forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathft_connectivitysimulation.m
626 lines (548 loc) · 21.1 KB
/
ft_connectivitysimulation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
function [simulated] = ft_connectivitysimulation(cfg)
% FT_CONNECTIVITYSIMULATION simulates channel-level time-series data with a
% specified connectivity structure. This function returns an output data
% structure that resembles the output of FT_PREPROCESSING.
%
% Use as
% [data] = ft_connectivitysimulation(cfg)
%
% where the configuration structure should contain:
% cfg.method = string, can be 'linear_mix', 'mvnrnd', 'ar', 'ar_reverse' (see below)
% cfg.nsignal = scalar, number of signals
% cfg.ntrials = scalar, number of trials
% cfg.triallength = in seconds
% cfg.fsample = in Hz
%
% Depending on the specific method that is selected, the configuration
% may also contain:
%
% Method 'linear_mix' implements a linear mixing with optional time shifts
% where the number of unobserved signals can be different from the number
% of observed signals
%
% Required cfg options:
% cfg.mix = matrix, [nsignal x number of unobserved signals]
% specifying the mixing from the unobserved signals to
% the observed signals, or
% = matrix, [nsignal x number of unobserved signals x number of
% samples] specifying the mixing from the
% unobserved signals to the observed signals which
% changes as a function of time within the trial
% = cell-arry, [1 x ntrials] with each cell a matrix as
% specified above, when a trial-specific mixing is
% required
% cfg.delay = matrix, [nsignal x number of unobserved signals]
% specifying the time shift (in samples) between the
% unobserved signals and the observed signals
%
% Optional cfg options:
% cfg.bpfilter = 'yes' (or 'no')
% cfg.bpfreq = [bplow bphigh] (default: [15 25])
% cfg.demean = 'yes' (or 'no')
% cfg.baselinewindow = [begin end] in seconds, the default is the complete trial
% cfg.absnoise = scalar (default: 1), specifying the standard deviation of
% white noise superimposed on top of the simulated signals
% cfg.randomseed = 'yes' or a number or vector with the seed value (default = 'yes')
%
% Method 'mvnrnd' implements a linear mixing with optional timeshifts in
% where the number of unobserved signals is equal to the number of observed
% signals. This method used the MATLAB function mvnrnd. The implementation
% is a bit ad-hoc and experimental, so users are discouraged to apply it.
% The time shift occurs only after the linear mixing, so the effect of the
% parameters on the simulation is not really clear. This method will be
% disabled in the future.
%
% Required cfg options:
% cfg.covmat = covariance matrix between the signals
% cfg.delay = delay vector between the signals in samples
%
% Optional cfg options:
% cfg.bpfilter = 'yes' (or 'no')
% cfg.bpfreq = [bplow bphigh] (default: [15 25])
% cfg.demean = 'yes' (or 'no')
% cfg.baselinewindow = [begin end] in seconds, the default is the complete trial
% cfg.absnoise = scalar (default: 1), specifying the standard
% deviation of white noise superimposed on top
% of the simulated signals
%
% Method 'ar' implements a multivariate autoregressive model to generate
% the data.
%
% Required cfg options:
% cfg.params = matrix, [nsignal x nsignal x number of lags] specifying the
% autoregressive coefficient parameters. A non-zero
% element at cfg.params(i,j,k) means a
% directional influence from signal j onto
% signal i (at lag k).
% cfg.noisecov = matrix, [nsignal x nsignal] specifying the covariance
% matrix of the innovation process
%
% Method 'ar_reverse' implements a multivariate autoregressive
% autoregressive model to generate the data, where the model coefficients
% are reverse-computed, based on the interaction pattern specified.
%
% Required cfg options:
% cfg.coupling = nxn matrix, specifying coupling strength, rows causing
% column
% cfg.delay = nxn matrix, specifying the delay, in seconds, from one
% signal's spectral component to the other signal, rows
% causing column
% cfg.ampl = nxn matrix, specifying the amplitude
% cfg.bpfreq = nxnx2 matrix, specifying the lower and upper frequencies
% of the bands that are transmitted, rows causing column
%
% The generated signals will have a spectrum that is 1/f + additional
% band-limited components, as specified in the cfg.
%
% See also FT_FREQSIMULATION, FT_DIPOLESIMULATION, FT_SPIKESIMULATION,
% FT_CONNECTIVITYANALYSIS
% Copyright (C) 2009-2015, Donders Institute for Brain, Cognition and Behaviour
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble provenance
ft_preamble randomseed
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% check input configuration for the generally applicable options
cfg = ft_checkconfig(cfg, 'required', {'nsignal' 'ntrials' 'triallength' 'fsample' 'method'});
cfg = ft_checkconfig(cfg, 'rename', {'blc', 'demean'});
% method specific defaults
switch cfg.method
case {'ar'}
cfg.absnoise = ft_getopt(cfg, 'absnoise', zeros(cfg.nsignal,1));
cfg = ft_checkconfig(cfg, 'required', {'params' 'noisecov'});
case {'linear_mix'}
cfg.bpfilter = ft_getopt(cfg, 'bpfilter', 'yes');
cfg.bpfreq = ft_getopt(cfg, 'bpfreq', [15 25]);
cfg.demean = ft_getopt(cfg, 'demean', 'yes');
cfg.absnoise = ft_getopt(cfg, 'absnoise', 1);
cfg = ft_checkconfig(cfg, 'required', {'mix' 'delay'});
case {'mvnrnd'}
cfg.bpfilter = ft_getopt(cfg, 'bpfilter', 'yes');
cfg.bpfreq = ft_getopt(cfg, 'bpfreq', [15 25]);
cfg.demean = ft_getopt(cfg, 'demean', 'yes');
cfg.absnoise = ft_getopt(cfg, 'absnoise', 1);
cfg = ft_checkconfig(cfg, 'required', {'covmat' 'delay'});
case {'ar_reverse'}
% reverse engineered high order ar-model
cfg = ft_checkconfig(cfg, 'required', {'coupling' 'delay' 'ampl' 'bpfreq'});
otherwise
end
trial = cell(1, cfg.ntrials);
time = cell(1, cfg.ntrials);
nsmp = round(cfg.triallength*cfg.fsample);
tim = (0:nsmp-1)./cfg.fsample;
% create the labels
label = cell(cfg.nsignal,1);
for k = 1:cfg.nsignal
label{k,1} = ['signal',num2str(k,'%03d')];
end
switch cfg.method
case {'ar'}
nlag = size(cfg.params,3);
nsignal = cfg.nsignal;
params = zeros(nlag*nsignal, nsignal);
for k = 1:nlag
%params(((k-1)*nsignal+1):k*nsignal,:) = cfg.params(:,:,k);
params(((k-1)*nsignal+1):k*nsignal,:) = cfg.params(:,:,k)';
% Use the transposition to make the implementation consistent with what
% comes out of ft_mvaranalysis. The transposition is introduced on May
% 13, 2011. This swaps the directional influence for existing scripts.
end
for k = 1:cfg.ntrials
tmp = zeros(nsignal, nsmp+ceil(nlag*1.05));
noise = mvnrnd(zeros(nsignal,1), cfg.noisecov, ceil(nsmp+nlag*1.05))';
state0 = zeros(nsignal*nlag, 1);
for m = 1:nlag
indx = ((m-1)*nsignal+1):m*nsignal;
state0(indx) = params(indx,:)'*noise(:,m);
end
tmp(:,1:nlag) = flip(reshape(state0, [nsignal nlag]),2);
for m = (nlag+1):(nsmp+ceil(nlag*1.05))
state0 = reshape(flip(tmp(:,(m-nlag):(m-1)),2), [nlag*nsignal 1]);
tmp(:, m) = params'*state0 + noise(:,m);
end
trial{k} = tmp(:,(ceil(nlag*1.05)+1):end);
if any(cfg.absnoise>0)
trial{k} = trial{k} + diag(cfg.absnoise)*randn(size(trial{k}));
end
time{k} = tim;
end
% create the output data
simulated = [];
simulated.trial = trial;
simulated.time = time;
simulated.fsample = cfg.fsample;
simulated.label = label;
case {'linear_mix'}
fltpad = 50; %hard coded to avoid filtering artifacts
delay = cfg.delay;
delay = delay - min(delay(:)); %make explicitly >= 0
maxdelay = max(delay(:));
if iscell(cfg.mix)
%each trial has different mix
mix = cfg.mix;
else
%make cell-array out of mix
tmpmix = cfg.mix;
mix = cell(1,cfg.ntrials);
for tr = 1:cfg.ntrials
mix{1,tr} = tmpmix;
end
end
nmixsignal = size(mix{1}, 2); %number of "mixing signals"
nsignal = size(mix{1}, 1);
if numel(size(mix{1}))==2
%mix is static, no function of time
for tr = 1:cfg.ntrials
mix{tr} = mix{tr}(:,:,ones(1,nsmp+maxdelay));
end
elseif numel(size(mix{1}))==3 && size(mix{1},3)==nsmp
%mix changes with time
for tr = 1:cfg.ntrials
mix{tr} = cat(3,mix{tr},mix{tr}(:,:,nsmp*ones(1,maxdelay)));
end
%FIXME think about this
%due to the delay the mix cannot be defined instantaneously with respect to all signals
end
for tr = 1:cfg.ntrials
mixsignal = randn(nmixsignal, nsmp + 2*fltpad + maxdelay);
mixsignal = preproc(mixsignal, label, offset2time(-fltpad, cfg.fsample, size(mixsignal,2)), cfg, fltpad, fltpad);
tmp = zeros(cfg.nsignal, nsmp);
for i=1:cfg.nsignal
for j=1:nmixsignal
begsmp = 1 + delay(i,j);
endsmp = nsmp + delay(i,j);
tmpmix = reshape(mix{tr}(i,j,:),[1 nsmp+maxdelay]) .* mixsignal(j,:);
tmp(i,:) = tmp(i,:) + tmpmix(begsmp:endsmp);
end
end
trial{tr} = tmp;
% add some noise
trial{tr} = ft_preproc_baselinecorrect(trial{tr} + cfg.absnoise*randn(size(trial{tr})));
% define time axis for this trial
time{tr} = tim;
end
case {'mvnrnd'}
fltpad = 100; %hard coded
shift = max(cfg.delay(:,1)) - cfg.delay(:,1);
for k = 1:cfg.ntrials
% create the multivariate time series plus some padding
tmp = mvnrnd(zeros(1,cfg.nsignal), cfg.covmat, nsmp+2*fltpad+max(shift))';
% add the delays
newtmp = zeros(cfg.nsignal, nsmp+2*fltpad);
for kk = 1:cfg.nsignal
begsmp = + shift(kk) + 1;
endsmp = nsmp + 2*fltpad + shift(kk);
newtmp(kk,:) = ft_preproc_baselinecorrect(tmp(kk,begsmp:endsmp));
end
% apply preproc
newtmp = preproc(newtmp, label, offset2time(-fltpad, cfg.fsample, size(newtmp,2)), cfg, fltpad, fltpad);
trial{k} = newtmp;
% add some noise
trial{k} = ft_preproc_baselinecorrect(trial{k} + cfg.absnoise*randn(size(trial{k})));
% define time axis for this trial
time{k} = tim;
end
% create the output data
simulated = [];
simulated.trial = trial;
simulated.time = time;
simulated.fsample = cfg.fsample;
simulated.label = label;
case 'ar_reverse'
% generate a spectral transfer matrix, and a cross-spectral matrix
% according to the specifications
% predefine some variables
fstep = 1/5;
fs = cfg.fsample;
Nyq = fs./2;
foi = (0:fstep:Nyq);
omega = foi./fs;
n = numel(foi);
% local renaming
nsignal = cfg.nsignal;
fband = cfg.bpfreq;
coupling = cfg.coupling;
ampl = cfg.ampl;
delay = cfg.delay;
% create a 1/f spectrum
slope = 0.5;
oneoverf = sqrt(max(omega(2)./10,omega).^-slope); % takes sqrt for amplitude
oneoverf = oneoverf./oneoverf(1);
%oneoverf(1) = 0;
%z = firws_filter(5.*fs, fs, Nyq./1.01);
%z = z(1:numel(foi));%.*exp(-1i.*pi.*foi.*rand(1)./100);
%oneoverf = z.*oneoverf;
% convert into indices
findx = fband;
for k = 1:numel(fband)
if isfinite(fband(k))
findx(k) = nearest(foi, fband(k));
end
end
% allocate some memory
mask = false(nsignal, nsignal, n);
krn = zeros(size(mask));
phi = zeros(size(krn));
dat = zeros(size(krn));
coupling_ampl = zeros(size(krn));
for k = 1:nsignal
for m = 1:nsignal
if all(isfinite(squeeze(findx(k,m,:))))
mask(k,m,findx(k,m,1):findx(k,m,2)) = true;
end
krn(k,m,mask(k,m,:)) = hanning(sum(mask(k,m,:)))';
phi(k,m,:) = 2.*pi.*delay(k,m).*foi;
%phi(k,m,:) = phi(k,m,:).*mask(k,m,:);
%phi(k,m,mask(k,m,:)) = phi(k,m,mask(k,m,:))-mean(phi(k,m,mask(k,m,:)));
if all(isfinite(squeeze(findx(k,m,:))))
phi(k,m,1:findx(k,m,1)) = phi(k,m,findx(k,m,1));
phi(k,m,findx(k,m,2):end) = phi(k,m,findx(k,m,2));
phi(k,m,:) = phi(k,m,:)-mean(phi(k,m,:));
end
coupling_ampl(k,m,:) = coupling(k,m).*krn(k,m,:);
end
end
% this matrix contains the intrinsic amplitude spectra on the diagonal
for k = 1:nsignal
if all(isfinite(squeeze(fband(k,k,:))))
z = firws_filter((1/fstep).*fs, fs, [fband(k,k,1) fband(k,k,2)]);
z = z(1:numel(foi));%.*exp(-1i.*pi.*foi.*rand(1)./100);
z = z.*ampl(k,k);
dat(k,k,:) = (abs(oneoverf)+abs(z)).*exp(1i.*(angle(z)+angle(oneoverf)));
else
dat(k,k,:) = oneoverf;
end
end
% now we can create a spectral transfer matrix
tf = zeros(nsignal,nsignal,n)+1i.*zeros(nsignal,nsignal,n);
for k = 1:nsignal
for m = 1:nsignal
if k~=m && all(isfinite(squeeze(fband(k,m,:))))
z = firws_filter((1/fstep).*fs, fs, [fband(k,m,1) fband(k,m,2)]);
z = z(1:numel(foi));
tf(m,k,:) = coupling(k,m).*exp(-1i.*phi(k,m,:)).*shiftdim(z,-1); % deliberate index swap!
elseif k==m
tf(k,m,:) = dat(k,m,:);
end
end
end
% create the cross spectral matrix
c = zeros(size(tf));
for k = 1:n
c(:,:,k) = tf(:,:,k)*tf(:,:,k)'; % assume noise to be I, i.e. the tf to swallow the amplitudes
end
% scale the Nyquist and DC bins
c(:,:,1) = real(c(:,:,1)./2);
c(:,:,end) = real(c(:,:,end)./2);
% create a freq-structure
freq = [];
freq.crsspctrm = c;
freq.label = label;
freq.freq = foi;
freq.dimord = 'chan_chan_freq';
% estimate the transfer-matrix non-parametrically
tmpcfg = [];
tmpcfg.method = 'transfer';
t = ft_connectivityanalysis(tmpcfg, freq);
% estimate the ar-model coefficients
a = transfer2coeffs(t.transfer,t.freq);
% recursively call this function to generate the data, this is
% somewhate tricky with respect to keeping the provenance info. Here,
% it is solved by removing from the cfg the original user-specified
% fields
cfgorig = cfg;
cfg = removefields(cfgorig, {'coupling' 'ampl' 'delay' 'bpfreq'});
cfg.method = 'ar';
cfg.params = a;
cfg.noisecov = diag(diag(t.noisecov.*cfg.fsample./2));
simulated = ft_connectivitysimulation(cfg);
cfg.previous = keepfields(cfgorig, {'coupling' 'ampl' 'delay' 'bpfreq'});
otherwise
ft_error('unknown method');
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble randomseed
ft_postamble provenance
ft_postamble history simulated
ft_postamble savevar simulated
%%%%%%
% helper function
function A = transfer2coeffs(H, freq, labelcmb, maxlag)
% TRANSFER2COEFFS converts a spectral transfer matrix into the time domain
% equivalent multivariate autoregressive coefficients up to a specified
% lag, starting from lag 1.
if nargin<3
labelcmb = [];
end
if nargin<4
maxlag = [];
end
% do a check on the input data
siz = size(H);
if numel(siz)==3 && siz(1)==siz(2)
% assume chan_chan_freq
isfull = true;
elseif numel(siz)==2
% assume chancmb_freq
isfull = false;
%assert(~isempty(labelcmb), 'input data appears to be chancmb_freq, but labelcmb is missing');
else
ft_error('dimensionality of input data is not supported');
end
dfreq = round(diff(freq)*1e5)./1e5; % allow for some numeric issues
if ~all(dfreq==dfreq(1))
ft_error('the frequency axis is not evenly spaced');
end
if freq(1)~=0
ft_warning('when converting the transfer function to coefficients, the frequency axis should ideally start at 0, zero padding the spectral density');
dfreq = mean(dfreq);
npad = freq(1)./dfreq;
% update the freq axis and keep track of the frequency bins that are
% expected in the output
selfreq = (1:numel(freq)) + npad;
freq = [(0:(npad-1))./dfreq freq];
if isfull
H = cat(3, zeros(siz(1),siz(2),npad), H);
else
H = cat(2, zeros(siz(1),npad), H);
end
else
selfreq = 1:numel(freq);
end
% ensure H to be double precision
H = double(H);
% deal with the two different types of input
if isfull
% check whether the last frequency bin is strictly real-valued.
% if that's the case, then it is assumed to be the Nyquist frequency
% and the two-sided spectral density will have an even number of
% frequency bins. if not, in order to preserve hermitian symmetry,
% the number of frequency bins needs to be odd.
Hend = H(:,:,end);
N = numel(freq);
m = size(H,1);
if all(imag(Hend(:))<abs(trace(Hend)./size(Hend,1)*1e-9))
N2 = 2*(N-1);
else
N2 = 2*(N-1)+1;
end
% preallocate memory for efficiency
Harr = zeros(m,m,N2) + 1i.*zeros(m,m,N2);
% the input cross-spectral density is assumed to be weighted with a
% factor of 2 in all non-DC and Nyquist bins, therefore weight the
% DC-bin with a factor of sqrt(2) to get a correct two-sided representation
Harr(:,:,1) = H(:,:,1).*2;
for k = 2:N
Harr(:,:, k) = H(:,:,k);
Harr(:,:,(N2+2)-k) = conj(H(:,:,k));
end
% the input cross-spectral density is assumed to be weighted with a
% factor of 2 in all non-DC and Nyquist bins, therefore weight the
% Nyquist bin with a factor of sqrt(2) to get a correct two-sided representation
if mod(size(Harr,3),2)==0
Harr(:,:,N) = Harr(:,:,N).*sqrt(2);
end
% invert the transfer matrix to get the fourier representation of the
% coefficients, and add an identity matrix
I = eye(siz(1));
for k = 1:size(Harr,3)
Harr(:,:,k) = I-inv(Harr(:,:,k));
end
% take the inverse fft to get the coefficients
A = ifft(reshape(permute(Harr, [3 1 2]), N2, []), 'symmetric');
A = A(2:end,:);
A = ipermute(reshape(A, [N2-1 siz(1) siz(1)]), [3 1 2]);
if ~isempty(maxlag)
A = A(:,:,1:maxlag);
end
else
% check whether the last frequency bin is strictly real-valued.
% if that's the case, then it is assumed to be the Nyquist frequency
% and the two-sided spectral density will have an even number of
% frequency bins. if not, in order to preserve hermitian symmetry,
% the number of frequency bins needs to be odd.
Hend = H(:,end);
N = numel(freq);
m = size(H,1);
if all(imag(Hend(:))<max(abs(Hend))*1e-9)
% the above heuristic may be a bit silly, FIXME
N2 = 2*(N-1);
else
N2 = 2*(N-1)+1;
end
% preallocate memory for efficiency
Harr = zeros(m,N2) + 1i.*zeros(m,N2);
% the input cross-spectral density is assumed to be weighted with a
% factor of 2 in all non-DC and Nyquist bins, therefore weight the
% DC-bin with a factor of sqrt(2) to get a correct two-sided representation
Harr(:,1) = H(:,1).*sqrt(2);
for k = 2:N
Harr(:, k) = H(:,k);
Harr(:,(N2+2)-k) = conj(H(:,k));
end
% the input cross-spectral density is assumed to be weighted with a
% factor of 2 in all non-DC and Nyquist bins, therefore weight the
% Nyquist bin with a factor of sqrt(2) to get a correct two-sided representation
if mod(size(Harr,3),2)==0
Harr(:,N) = Harr(:,N).*sqrt(2);
end
% invert the transfer matrix to get the fourier representation of the
% coefficients, and add an identity matrix
%
% this assumes Harr to be in the rows quadruplets of pairwise
% decompositions, i.e. reshapable, without checking the labelcmb
ncmb = size(Harr,1)./4;
I = eye(2);
for k = 1:N2
Htmp = reshape(Harr(:,k), [2 2 ncmb]);
Htmp = repmat(I, [1 1 ncmb]) - inv2x2(Htmp);
Harr(:,k) = Htmp(:);
end
% take the inverse fft to get the coefficients
A = ifft(permute(Harr, [2 1]), 'symmetric');
A = A(2:end,:);
A = ipermute(A, [2 1]);
if ~isempty(maxlag)
A = A(:,1:maxlag);
end
end
function z = firws_filter(N, Fs, Fbp)
switch numel(Fbp)
case 1
[~, B, ~] = ft_preproc_lowpassfilter(randn(1,N), Fs, Fbp, [], 'firws', 'onepass-minphase');
z = fft(B, N);
case 2
[~, B, ~] = ft_preproc_bandpassfilter(randn(1,N), Fs, Fbp, [], 'firws', 'onepass-minphase');
z = fft(B, N);
end