forked from fieldtrip/fieldtrip
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ft_megplanar.m
392 lines (338 loc) · 15.7 KB
/
ft_megplanar.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
function [data] = ft_megplanar(cfg, data)
% FT_MEGPLANAR computes planar MEG gradients gradients for raw data or average
% event-related field data. It can also convert frequency-domain data that was computed
% using FT_FREQANALYSIS, as long as it contains the complex-valued fourierspcrm and not
% only the powspctrm.
%
% Use as
% [interp] = ft_megplanar(cfg, data)
% where the input data corresponds to the output from FT_PREPROCESSING,
% FT_TIMELOCKANALYSIS or FT_FREQANALYSIS (with output='fourierspcrm').
%
% The configuration should contain
% cfg.planarmethod = string, can be 'sincos', 'orig', 'fitplane', 'sourceproject' (default = 'sincos')
% cfg.channel = Nx1 cell-array with selection of channels (default = 'MEG'), see FT_CHANNELSELECTION for details
% cfg.trials = 'all' or a selection given as a 1xN vector (default = 'all')
%
% The methods orig, sincos and fitplane are all based on a neighbourhood interpolation.
% For these methods you need to specify
% cfg.neighbours = neighbourhood structure, see FT_PREPARE_NEIGHBOURS
%
% In the 'sourceproject' method a minumum current estimate is done using a large number
% of dipoles that are placed in the upper layer of the brain surface, followed by a
% forward computation towards a planar gradiometer array. This requires the
% specification of a volume conduction model of the head and of a source model. The
% 'sourceproject' method is not supported for frequency domain data.
%
% A dipole layer representing the brain surface must be specified with
% cfg.inwardshift = depth of the source layer relative to the head model surface (default = 2.5 cm, which is appropriate for a skin-based head model)
% cfg.spheremesh = number of dipoles in the source layer (default = 642)
% cfg.pruneratio = for singular values, default is 1e-3
% cfg.headshape = a filename containing headshape, a structure containing a
% single triangulated boundary, or a Nx3 matrix with surface
% points
% If no headshape is specified, the dipole layer will be based on the inner compartment
% of the volume conduction model.
%
% The volume conduction model of the head should be specified as
% cfg.headmodel = structure with volume conduction model, see FT_PREPARE_HEADMODEL
%
% The following cfg fields are optional:
% cfg.feedback
%
% To facilitate data-handling and distributed computing you can use
% cfg.inputfile = ...
% cfg.outputfile = ...
% If you specify one of these (or both) the input data will be read from a *.mat
% file on disk and/or the output data will be written to a *.mat file. These mat
% files should contain only a single variable, corresponding with the
% input/output structure.
%
% See also FT_COMBINEPLANAR, FT_NEIGHBOURSELECTION
% Copyright (C) 2004, Robert Oostenveld
%
% This file is part of FieldTrip, see http://www.fieldtriptoolbox.org
% for the documentation and details.
%
% FieldTrip is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% FieldTrip is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with FieldTrip. If not, see <http://www.gnu.org/licenses/>.
%
% $Id$
% these are used by the ft_preamble/ft_postamble function and scripts
ft_revision = '$Id$';
ft_nargin = nargin;
ft_nargout = nargout;
% do the general setup of the function
ft_defaults
ft_preamble init
ft_preamble debug
ft_preamble loadvar data
ft_preamble provenance data
ft_preamble trackconfig
% the ft_abort variable is set to true or false in ft_preamble_init
if ft_abort
return
end
% store the original input representation of the data, this is used later on to convert it back
isfreq = ft_datatype(data, 'freq');
israw = ft_datatype(data, 'raw');
istlck = ft_datatype(data, 'timelock'); % this will be temporary converted into raw
% check if the input data is valid for this function, this converts the data if needed
data = ft_checkdata(data, 'datatype', {'raw' 'freq'}, 'feedback', 'yes', 'hassampleinfo', 'yes', 'ismeg', 'yes', 'senstype', {'ctf151', 'ctf275', 'bti148', 'bti248', 'itab153', 'yokogawa160', 'yokogawa64'});
if istlck
% the timelocked data has just been converted to a raw representation
% and will be converted back to timelocked at the end of this function
israw = true;
end
if isfreq
if ~isfield(data, 'fourierspctrm'), ft_error('freq data should contain Fourier spectra'); end
end
cfg = ft_checkconfig(cfg, 'renamed', {'hdmfile', 'headmodel'});
cfg = ft_checkconfig(cfg, 'renamed', {'vol', 'headmodel'});
% set the default configuration
cfg.channel = ft_getopt(cfg, 'channel', 'MEG');
cfg.trials = ft_getopt(cfg, 'trials', 'all', 1);
cfg.planarmethod = ft_getopt(cfg, 'planarmethod', 'sincos');
cfg.feedback = ft_getopt(cfg, 'feedback', 'text');
% check if the input cfg is valid for this function
cfg = ft_checkconfig(cfg, 'renamedval', {'headshape', 'headmodel', []});
if ~strcmp(cfg.planarmethod, 'sourceproject')
cfg = ft_checkconfig(cfg, 'required', {'neighbours'});
end
if isfield(cfg, 'headshape') && isa(cfg.headshape, 'config')
% convert the nested config-object back into a normal structure
cfg.headshape = struct(cfg.headshape);
end
if isfield(cfg, 'neighbours') && isa(cfg.neighbours, 'config')
% convert the nested config-object back into a normal structure
cfg.neighbours = struct(cfg.neighbours);
end
% put the low-level options pertaining to the dipole grid in their own field
cfg = ft_checkconfig(cfg, 'renamed', {'tightgrid', 'tight'}); % this is moved to cfg.grid.tight by the subsequent createsubcfg
cfg = ft_checkconfig(cfg, 'renamed', {'sourceunits', 'unit'}); % this is moved to cfg.grid.unit by the subsequent createsubcfg
cfg = ft_checkconfig(cfg, 'createsubcfg', {'grid'});
% select trials of interest
tmpcfg = keepfields(cfg, {'trials', 'channel', 'showcallinfo'});
data = ft_selectdata(tmpcfg, data);
% restore the provenance information
[cfg, data] = rollback_provenance(cfg, data);
if strcmp(cfg.planarmethod, 'sourceproject')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Do an inverse computation with a simplified distributed source model
% and compute forward again with the axial gradiometer array replaced by
% a planar one.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% method specific configuration options
cfg.headshape = ft_getopt(cfg, 'headshape', []);
cfg.inwardshift = ft_getopt(cfg, 'inwardshift', 2.5); % this number assumes that all other inputs are in cm
cfg.pruneratio = ft_getopt(cfg, 'pruneratio', 1e-3);
cfg.spheremesh = ft_getopt(cfg, 'spheremesh', 642);
if isfreq
ft_error('the method ''sourceproject'' is not supported for frequency data as input');
end
Nchan = length(data.label);
Ntrials = length(data.trial);
% FT_PREPARE_VOL_SENS will match the data labels, the gradiometer labels and the
% volume model labels (in case of a localspheres model) and result in a gradiometer
% definition that only contains the gradiometers that are present in the data.
[headmodel, axial.grad, cfg] = prepare_headmodel(cfg, data);
% determine the dipole layer that represents the surface of the brain
if isempty(cfg.headshape)
% construct from the inner layer of the volume conduction model
pos = headsurface(headmodel, axial.grad, 'surface', 'cortex', 'inwardshift', cfg.inwardshift, 'npnt', cfg.spheremesh);
else
% get the surface describing the head shape
if isstruct(cfg.headshape) && isfield(cfg.headshape, 'pnt')
% use the headshape surface specified in the configuration
headshape = cfg.headshape;
elseif isnumeric(cfg.headshape) && size(cfg.headshape,2)==3
% use the headshape points specified in the configuration
headshape.pos = cfg.headshape;
elseif ischar(cfg.headshape)
% read the headshape from file
headshape = ft_read_headshape(cfg.headshape);
else
ft_error('cfg.headshape is not specified correctly')
end
if ~isfield(headshape, 'tri')
% generate a closed triangulation from the surface points
headshape.pos = unique(headshape.pos, 'rows');
headshape.tri = projecttri(headshape.pos);
end
% construct from the head surface
pos = headsurface([], [], 'headshape', headshape, 'inwardshift', cfg.inwardshift, 'npnt', cfg.spheremesh);
end
% compute the forward model for the axial gradiometers
fprintf('computing forward model for %d dipoles\n', size(pos,1));
lfold = ft_compute_leadfield(pos, axial.grad, headmodel);
% construct the planar gradient definition and compute its forward model
% this will not work for a localspheres model, compute_leadfield will catch
% the error
planar.grad = constructplanargrad([], axial.grad);
lfnew = ft_compute_leadfield(pos, planar.grad, headmodel);
% compute the interpolation matrix
transform = lfnew * prunedinv(lfold, cfg.pruneratio);
planarmontage = [];
planarmontage.tra = transform;
planarmontage.labelold = axial.grad.label;
planarmontage.labelnew = planar.grad.label;
% apply the linear transformation to the data
interp = ft_apply_montage(data, planarmontage, 'keepunused', 'yes');
% also apply the linear transformation to the gradiometer definition
interp.grad = ft_apply_montage(data.grad, planarmontage, 'balancename', 'planar', 'keepunused', 'yes');
% ensure there is a type string describing the gradiometer definition
if ~isfield(interp.grad, 'type')
interp.grad.type = [ft_senstype(data.grad) '_planar'];
else
interp.grad.type = [interp.grad.type '_planar'];
end
% % interpolate the data towards the planar gradiometers
% for i=1:Ntrials
% fprintf('interpolating trial %d to planar gradiometer\n', i);
% interp.trial{i} = transform * data.trial{i}(dataindx,:);
% end % for Ntrials
%
% % all planar gradiometer channels are included in the output
% interp.grad = planar.grad;
% interp.label = planar.grad.label;
%
% % copy the non-gradiometer channels back into the output data
% other = setdiff(1:Nchan, dataindx);
% for i=other
% interp.label{end+1} = data.label{i};
% for j=1:Ntrials
% interp.trial{j}(end+1,:) = data.trial{j}(i,:);
% end
% end
%
else
sens = ft_determine_units(data.grad);
chanposnans = any(isnan(sens.chanpos(:))) || any(isnan(sens.chanori(:)));
if chanposnans
if isfield(sens, 'chanposold')
% temporarily replace chanpos and chanorig with the original values
sens.chanpos = sens.chanposold;
sens.chanori = sens.chanoriold;
sens.label = sens.labelold;
sens = rmfield(sens, {'chanposold', 'chanoriold', 'labelold'});
else
ft_error('The channel positions (and/or orientations) contain NaNs; this prohibits correct behavior of the function. Please replace the input channel definition with one that contains valid channel positions');
end
end
cfg.channel = ft_channelselection(cfg.channel, sens.label);
cfg.channel = ft_channelselection(cfg.channel, data.label);
% ensure channel order according to cfg.channel (there might be one check
% too much in here somewhere or in the subfunctions, but I don't care.
% Better one too much than one too little - JMH @ 09/19/12
cfg = struct(cfg);
[neighbsel] = match_str({cfg.neighbours.label}, cfg.channel);
cfg.neighbours = cfg.neighbours(neighbsel);
cfg.neighbsel = channelconnectivity(cfg);
% determine
fprintf('average number of neighbours is %.2f\n', mean(sum(cfg.neighbsel)));
Ngrad = length(sens.label);
distance = zeros(Ngrad,Ngrad);
for i=1:size(cfg.neighbsel,1)
j=find(cfg.neighbsel(i, :));
d = sqrt(sum((sens.chanpos(j,:) - repmat(sens.chanpos(i, :), numel(j), 1)).^2, 2));
distance(i,j) = d;
distance(j,i) = d;
end
fprintf('minimum distance between neighbours is %6.2f %s\n', min(distance(distance~=0)), sens.unit);
fprintf('maximum distance between gradiometers is %6.2f %s\n', max(distance(distance~=0)), sens.unit);
% The following does not work when running in deployed mode because the
% private functions that compute the planar montage are not recognized as
% such and won't be compiled, unless explicitly specified.
% % generically call megplanar_orig megplanar_sincos or megplanar_fitplane
%fun = ['megplanar_' cfg.planarmethod];
%if ~exist(fun, 'file')
% ft_error('unknown method for computation of planar gradient');
%end
%planarmontage = eval([fun '(cfg, data.grad)']);
switch cfg.planarmethod
case 'sincos'
planarmontage = megplanar_sincos(cfg, sens);
case 'orig'
% method specific info that is needed
cfg.distance = distance;
planarmontage = megplanar_orig(cfg, sens);
case 'fitplane'
planarmontage = megplanar_fitplane(cfg, sens);
otherwise
fun = ['megplanar_' cfg.planarmethod];
if ~exist(fun, 'file')
ft_error('unknown method for computation of planar gradient');
end
planarmontage = eval([fun '(cfg, data.grad)']);
end
% apply the linear transformation to the data
interp = ft_apply_montage(data, planarmontage, 'keepunused', 'yes', 'feedback', cfg.feedback);
% also apply the linear transformation to the gradiometer definition
interp.grad = ft_apply_montage(sens, planarmontage, 'balancename', 'planar', 'keepunused', 'yes');
% ensure there is a type string describing the gradiometer definition
if ~isfield(interp.grad, 'type')
% put the original gradiometer type in (will get _planar appended)
interp.grad.type = ft_senstype(sens);
end
interp.grad.type = [interp.grad.type '_planar'];
% add the chanpos info back into the gradiometer description
tmplabel = interp.grad.label;
for k = 1:numel(tmplabel)
if ~isempty(strfind(tmplabel{k}, '_dV')) || ~isempty(strfind(tmplabel{k}, '_dH'))
tmplabel{k} = tmplabel{k}(1:end-3);
end
end
[ix,iy] = match_str(tmplabel, sens.label);
interp.grad.chanpos(ix,:) = sens.chanpos(iy,:);
% if the original chanpos contained nans, make sure to put nans in the
% updated one as well, and move the updated chanpos values to chanposold
if chanposnans
interp.grad.chanposold = sens.chanpos;
interp.grad.chanoriold = sens.chanori;
interp.grad.labelold = sens.label;
interp.grad.chanpos = nan(size(interp.grad.chanpos));
interp.grad.chanori = nan(size(interp.grad.chanori));
end
end
if istlck
% convert the raw structure back into a timelock structure
interp = ft_checkdata(interp, 'datatype', 'timelock');
israw = false;
end
% copy the trial specific information into the output
if isfield(data, 'trialinfo')
interp.trialinfo = data.trialinfo;
end
% copy the sampleinfo field as well
if isfield(data, 'sampleinfo')
interp.sampleinfo = data.sampleinfo;
end
% do the general cleanup and bookkeeping at the end of the function
ft_postamble debug
ft_postamble trackconfig
ft_postamble previous data
% rename the output variable to accomodate the savevar postamble
data = interp;
ft_postamble provenance data
ft_postamble history data
ft_postamble savevar data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SUBFUNCTION that computes the inverse using a pruned SVD
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [lfi] = prunedinv(lf, r)
[u, s, v] = svd(lf);
p = find(s<(s(1,1)*r) & s~=0);
fprintf('pruning %d out of %d singular values\n', length(p), min(size(s)));
s(p) = 0;
s(find(s~=0)) = 1./s(find(s~=0));
lfi = v * s' * u';