forked from axolotl-ai-cloud/axolotl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
52 lines (45 loc) · 1.53 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
"""Prepare and train a model on a dataset. Can also infer from a model or merge lora"""
import logging
from pathlib import Path
import fire
import transformers
from axolotl.cli import (
check_accelerate_default_config,
check_user_token,
do_inference,
do_merge_lora,
load_cfg,
load_datasets,
print_axolotl_text_art,
)
from axolotl.cli.shard import shard
from axolotl.common.cli import TrainerCliArgs
from axolotl.train import train
LOG = logging.getLogger("axolotl.scripts.finetune")
def do_cli(config: Path = Path("examples/"), **kwargs):
print_axolotl_text_art()
LOG.warning(
str(
PendingDeprecationWarning(
"scripts/finetune.py will be replaced with calling axolotl.cli.train"
)
)
)
parsed_cfg = load_cfg(config, **kwargs)
check_accelerate_default_config()
check_user_token()
parser = transformers.HfArgumentParser((TrainerCliArgs))
parsed_cli_args, _ = parser.parse_args_into_dataclasses(
return_remaining_strings=True
)
if parsed_cli_args.inference:
do_inference(cfg=parsed_cfg, cli_args=parsed_cli_args)
elif parsed_cli_args.merge_lora:
do_merge_lora(cfg=parsed_cfg, cli_args=parsed_cli_args)
elif parsed_cli_args.shard:
shard(cfg=parsed_cfg, cli_args=parsed_cli_args)
else:
dataset_meta = load_datasets(cfg=parsed_cfg, cli_args=parsed_cli_args)
train(cfg=parsed_cfg, cli_args=parsed_cli_args, dataset_meta=dataset_meta)
if __name__ == "__main__":
fire.Fire(do_cli)