Skip to content

Latest commit

 

History

History
 
 

samples

TensorRT Samples

Contents

1. "Hello World" Samples

Sample Language Format Description
sampleOnnxMNIST C++ ONNX “Hello World” For TensorRT With ONNX
network_api_pytorch_mnist Python INetwork “Hello World” For TensorRT Using Pytorch

2. TensorRT API Samples

Sample Language Format Description
sampleAlgorithmSelector C++ ONNX Algorithm Selection API usage
sampleCharRNN C++ INetwork Building An RNN Network Layer By Layer
sampleDynamicReshape C++ ONNX Digit Recognition With Dynamic Shapes In TensorRT
sampleINT8API C++ ONNX Performing Inference In INT8 Precision
sampleNamedDimensions C++ ONNX Working with named input dimensions
sampleOnnxMnistCoordConvAC C++ ONNX Implementing CoordConv with a custom plugin
sampleIOFormats C++ ONNX Specifying TensorRT I/O Formats
trtexec C++ All TensorRT Command-Line Wrapper: trtexec
engine_refit_onnx_bidaf Python ONNX refitting an engine built from an ONNX model via parsers.
introductory_parser_samples Python ONNX Introduction To Importing Models Using TensorRT Parsers
onnx_packnet Python ONNX TensorRT Inference Of ONNX Models With Custom Layers

3. Application Samples

Sample Language Format Description
detectron2 Python ONNX Support for Detectron 2 Mask R-CNN R50-FPN 3x model in TensorRT
efficientdet Python ONNX EfficientDet Object Detection with TensorRT
efficientnet Python ONNX EfficientNet V1 and V2 Classification with TensorRT
tensorflow_object_detection_api Python ONNX TensorFlow Object Detection API Models in TensorRT
yolov3_onnx Python ONNX Object Detection Using YOLOv3 With TensorRT ONNX Backend

Known Limitations

  • UFF converter and GraphSurgeon tools are only supported with Tensorflow 1.x
  • For the UFF samples, please use the NVIDIA tf1 (Tensorflow 1.x) for running these tests or install Tensorflow 1.x manually.