Sample | Language | Format | Description |
---|---|---|---|
sampleOnnxMNIST | C++ | ONNX | “Hello World” For TensorRT With ONNX |
network_api_pytorch_mnist | Python | INetwork | “Hello World” For TensorRT Using Pytorch |
Sample | Language | Format | Description |
---|---|---|---|
sampleAlgorithmSelector | C++ | ONNX | Algorithm Selection API usage |
sampleCharRNN | C++ | INetwork | Building An RNN Network Layer By Layer |
sampleDynamicReshape | C++ | ONNX | Digit Recognition With Dynamic Shapes In TensorRT |
sampleINT8API | C++ | ONNX | Performing Inference In INT8 Precision |
sampleNamedDimensions | C++ | ONNX | Working with named input dimensions |
sampleOnnxMnistCoordConvAC | C++ | ONNX | Implementing CoordConv with a custom plugin |
sampleIOFormats | C++ | ONNX | Specifying TensorRT I/O Formats |
trtexec | C++ | All | TensorRT Command-Line Wrapper: trtexec |
engine_refit_onnx_bidaf | Python | ONNX | refitting an engine built from an ONNX model via parsers. |
introductory_parser_samples | Python | ONNX | Introduction To Importing Models Using TensorRT Parsers |
onnx_packnet | Python | ONNX | TensorRT Inference Of ONNX Models With Custom Layers |
Sample | Language | Format | Description |
---|---|---|---|
detectron2 | Python | ONNX | Support for Detectron 2 Mask R-CNN R50-FPN 3x model in TensorRT |
efficientdet | Python | ONNX | EfficientDet Object Detection with TensorRT |
efficientnet | Python | ONNX | EfficientNet V1 and V2 Classification with TensorRT |
tensorflow_object_detection_api | Python | ONNX | TensorFlow Object Detection API Models in TensorRT |
yolov3_onnx | Python | ONNX | Object Detection Using YOLOv3 With TensorRT ONNX Backend |
- UFF converter and GraphSurgeon tools are only supported with Tensorflow 1.x
- For the UFF samples, please use the NVIDIA tf1 (Tensorflow 1.x) for running these tests or install Tensorflow 1.x manually.