-
Notifications
You must be signed in to change notification settings - Fork 1
/
experiment.txt
72 lines (46 loc) · 1.59 KB
/
experiment.txt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
100 plane images: 25% pixel sampling
Dataset-1: Smooth Gaussian No Noise
Dataset-2: Noise ~ guassian var = 1 * length^2/5
- implicitly two controls here if we remove bounding box features
Dataset 3- ditto 1, hard feature
Dataset 4- ditto 2, hard features
Dataset 5, mask feature
Dateset 6, mask feature
cluster 3: mask, hard,
cluster 4: smooth, control
Commands
control <-- used noise-smooth-train.mat
train 75 units 85 units
save in matlab_segmentation_models
diary('/h/53/xukelvin/matlab_segmentation/models/may8/control/85.txt');
model = mlp2layer_train(tdata{1}(:,[1:107]),tlabels, 85, 0.5, 0.9, 0, 4000, 20, vdata{1}(:,[1:107]), vlabels, 200, '/h/53/xukelvin/matlab_segmentation/models/may8/control'); diary off;
-------------
generate a test set for every case:
Choose best model for each case and run tuning code in parallel.
-> IOU and pixel accuracy.
1: smooth
2: smooth noise.
3: hard
4: hard noise
5: mask
6: mask noise
after matlab reshape it will all be in order
Best models
1: smooth 800.mat
2: smooth noise. 600.mat
3: hard 1600.mat
4: hard noise 200.mat
5: mask 200.mat
6: mask noise 1000.mat
7. control m4000.
Rerunning experiment standardizing the set
diary('/u/xukelvin/matlab_segmentation/models/apr7/smooth/85.txt');
Rerunning experiments <--- keeping track of the mean and standard deviation of the training set
Best Models:
Round 2:
1: smooth m800.mat
2: smooth noise m400.mat
3: hard m1200.mat
4: hard noise m1400.mat
5: mask m3600.mat
6: mask noise m1400.mat