-
Notifications
You must be signed in to change notification settings - Fork 0
/
ncsnpp.py
381 lines (321 loc) · 13.3 KB
/
ncsnpp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: skip-file
from . import utils, layers, layerspp, normalization
import torch.nn as nn
import functools
import torch
import numpy as np
ResnetBlockDDPM = layerspp.ResnetBlockDDPMpp
ResnetBlockBigGAN = layerspp.ResnetBlockBigGANpp
Combine = layerspp.Combine
conv3x3 = layerspp.conv3x3
conv1x1 = layerspp.conv1x1
get_act = layers.get_act
get_normalization = normalization.get_normalization
default_initializer = layers.default_init
@utils.register_model(name='ncsnpp')
class NCSNpp(nn.Module):
"""NCSN++ model"""
def __init__(self, config):
super().__init__()
self.config = config
self.act = act = get_act(config)
self.register_buffer('sigmas', torch.tensor(utils.get_sigmas(config)))
self.nf = nf = config.model.nf
ch_mult = config.model.ch_mult
self.num_res_blocks = num_res_blocks = config.model.num_res_blocks
self.attn_resolutions = attn_resolutions = config.model.attn_resolutions
dropout = config.model.dropout
resamp_with_conv = config.model.resamp_with_conv
self.num_resolutions = num_resolutions = len(ch_mult)
self.all_resolutions = all_resolutions = [config.data.image_size // (2 ** i) for i in range(num_resolutions)]
self.conditional = conditional = config.model.conditional # noise-conditional
fir = config.model.fir
fir_kernel = config.model.fir_kernel
self.skip_rescale = skip_rescale = config.model.skip_rescale
self.resblock_type = resblock_type = config.model.resblock_type.lower()
self.progressive = progressive = config.model.progressive.lower()
self.progressive_input = progressive_input = config.model.progressive_input.lower()
self.embedding_type = embedding_type = config.model.embedding_type.lower()
init_scale = config.model.init_scale
assert progressive in ['none', 'output_skip', 'residual']
assert progressive_input in ['none', 'input_skip', 'residual']
assert embedding_type in ['fourier', 'positional']
combine_method = config.model.progressive_combine.lower()
combiner = functools.partial(Combine, method=combine_method)
modules = []
# timestep/noise_level embedding; only for continuous training
if embedding_type == 'fourier':
# Gaussian Fourier features embeddings.
assert config.training.continuous, "Fourier features are only used for continuous training."
modules.append(layerspp.GaussianFourierProjection(
embedding_size=nf, scale=config.model.fourier_scale
))
embed_dim = 2 * nf
elif embedding_type == 'positional':
embed_dim = nf
else:
raise ValueError(f'embedding type {embedding_type} unknown.')
if conditional:
modules.append(nn.Linear(embed_dim, nf * 4))
modules[-1].weight.data = default_initializer()(modules[-1].weight.shape)
nn.init.zeros_(modules[-1].bias)
modules.append(nn.Linear(nf * 4, nf * 4))
modules[-1].weight.data = default_initializer()(modules[-1].weight.shape)
nn.init.zeros_(modules[-1].bias)
AttnBlock = functools.partial(layerspp.AttnBlockpp,
init_scale=init_scale,
skip_rescale=skip_rescale)
Upsample = functools.partial(layerspp.Upsample,
with_conv=resamp_with_conv, fir=fir, fir_kernel=fir_kernel)
if progressive == 'output_skip':
self.pyramid_upsample = layerspp.Upsample(fir=fir, fir_kernel=fir_kernel, with_conv=False)
elif progressive == 'residual':
pyramid_upsample = functools.partial(layerspp.Upsample,
fir=fir, fir_kernel=fir_kernel, with_conv=True)
Downsample = functools.partial(layerspp.Downsample,
with_conv=resamp_with_conv, fir=fir, fir_kernel=fir_kernel)
if progressive_input == 'input_skip':
self.pyramid_downsample = layerspp.Downsample(fir=fir, fir_kernel=fir_kernel, with_conv=False)
elif progressive_input == 'residual':
pyramid_downsample = functools.partial(layerspp.Downsample,
fir=fir, fir_kernel=fir_kernel, with_conv=True)
if resblock_type == 'ddpm':
ResnetBlock = functools.partial(ResnetBlockDDPM,
act=act,
dropout=dropout,
init_scale=init_scale,
skip_rescale=skip_rescale,
temb_dim=nf * 4)
elif resblock_type == 'biggan':
ResnetBlock = functools.partial(ResnetBlockBigGAN,
act=act,
dropout=dropout,
fir=fir,
fir_kernel=fir_kernel,
init_scale=init_scale,
skip_rescale=skip_rescale,
temb_dim=nf * 4)
else:
raise ValueError(f'resblock type {resblock_type} unrecognized.')
# Downsampling block
channels = config.data.num_channels
if progressive_input != 'none':
input_pyramid_ch = channels
modules.append(conv3x3(channels, nf))
hs_c = [nf]
in_ch = nf
for i_level in range(num_resolutions):
# Residual blocks for this resolution
for i_block in range(num_res_blocks):
out_ch = nf * ch_mult[i_level]
modules.append(ResnetBlock(in_ch=in_ch, out_ch=out_ch))
in_ch = out_ch
if all_resolutions[i_level] in attn_resolutions:
modules.append(AttnBlock(channels=in_ch))
hs_c.append(in_ch)
if i_level != num_resolutions - 1:
if resblock_type == 'ddpm':
modules.append(Downsample(in_ch=in_ch))
else:
modules.append(ResnetBlock(down=True, in_ch=in_ch))
if progressive_input == 'input_skip':
modules.append(combiner(dim1=input_pyramid_ch, dim2=in_ch))
if combine_method == 'cat':
in_ch *= 2
elif progressive_input == 'residual':
modules.append(pyramid_downsample(in_ch=input_pyramid_ch, out_ch=in_ch))
input_pyramid_ch = in_ch
hs_c.append(in_ch)
in_ch = hs_c[-1]
modules.append(ResnetBlock(in_ch=in_ch))
modules.append(AttnBlock(channels=in_ch))
modules.append(ResnetBlock(in_ch=in_ch))
pyramid_ch = 0
# Upsampling block
for i_level in reversed(range(num_resolutions)):
for i_block in range(num_res_blocks + 1):
out_ch = nf * ch_mult[i_level]
modules.append(ResnetBlock(in_ch=in_ch + hs_c.pop(),
out_ch=out_ch))
in_ch = out_ch
if all_resolutions[i_level] in attn_resolutions:
modules.append(AttnBlock(channels=in_ch))
if progressive != 'none':
if i_level == num_resolutions - 1:
if progressive == 'output_skip':
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32),
num_channels=in_ch, eps=1e-6))
modules.append(conv3x3(in_ch, channels, init_scale=init_scale))
pyramid_ch = channels
elif progressive == 'residual':
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32),
num_channels=in_ch, eps=1e-6))
modules.append(conv3x3(in_ch, in_ch, bias=True))
pyramid_ch = in_ch
else:
raise ValueError(f'{progressive} is not a valid name.')
else:
if progressive == 'output_skip':
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32),
num_channels=in_ch, eps=1e-6))
modules.append(conv3x3(in_ch, channels, bias=True, init_scale=init_scale))
pyramid_ch = channels
elif progressive == 'residual':
modules.append(pyramid_upsample(in_ch=pyramid_ch, out_ch=in_ch))
pyramid_ch = in_ch
else:
raise ValueError(f'{progressive} is not a valid name')
if i_level != 0:
if resblock_type == 'ddpm':
modules.append(Upsample(in_ch=in_ch))
else:
modules.append(ResnetBlock(in_ch=in_ch, up=True))
assert not hs_c
if progressive != 'output_skip':
modules.append(nn.GroupNorm(num_groups=min(in_ch // 4, 32),
num_channels=in_ch, eps=1e-6))
modules.append(conv3x3(in_ch, channels, init_scale=init_scale))
self.all_modules = nn.ModuleList(modules)
def forward(self, x, time_cond):
# timestep/noise_level embedding; only for continuous training
modules = self.all_modules
m_idx = 0
if self.embedding_type == 'fourier':
# Gaussian Fourier features embeddings.
used_sigmas = time_cond
temb = modules[m_idx](torch.log(used_sigmas))
m_idx += 1
elif self.embedding_type == 'positional':
# Sinusoidal positional embeddings.
timesteps = time_cond
used_sigmas = self.sigmas[time_cond.long()]
temb = layers.get_timestep_embedding(timesteps, self.nf)
else:
raise ValueError(f'embedding type {self.embedding_type} unknown.')
if self.conditional:
temb = modules[m_idx](temb)
m_idx += 1
temb = modules[m_idx](self.act(temb))
m_idx += 1
else:
temb = None
if not self.config.data.centered:
# If input data is in [0, 1]
x = 2 * x - 1.
# Downsampling block
input_pyramid = None
if self.progressive_input != 'none':
input_pyramid = x
hs = [modules[m_idx](x)]
m_idx += 1
for i_level in range(self.num_resolutions):
# Residual blocks for this resolution
for i_block in range(self.num_res_blocks):
h = modules[m_idx](hs[-1], temb)
m_idx += 1
if h.shape[-1] in self.attn_resolutions:
h = modules[m_idx](h)
m_idx += 1
hs.append(h)
if i_level != self.num_resolutions - 1:
if self.resblock_type == 'ddpm':
h = modules[m_idx](hs[-1])
m_idx += 1
else:
h = modules[m_idx](hs[-1], temb)
m_idx += 1
if self.progressive_input == 'input_skip':
input_pyramid = self.pyramid_downsample(input_pyramid)
h = modules[m_idx](input_pyramid, h)
m_idx += 1
elif self.progressive_input == 'residual':
input_pyramid = modules[m_idx](input_pyramid)
m_idx += 1
if self.skip_rescale:
input_pyramid = (input_pyramid + h) / np.sqrt(2.)
else:
input_pyramid = input_pyramid + h
h = input_pyramid
hs.append(h)
h = hs[-1]
h = modules[m_idx](h, temb)
m_idx += 1
h = modules[m_idx](h)
m_idx += 1
h = modules[m_idx](h, temb)
m_idx += 1
pyramid = None
# Upsampling block
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks + 1):
h = modules[m_idx](torch.cat([h, hs.pop()], dim=1), temb)
m_idx += 1
if h.shape[-1] in self.attn_resolutions:
h = modules[m_idx](h)
m_idx += 1
if self.progressive != 'none':
if i_level == self.num_resolutions - 1:
if self.progressive == 'output_skip':
pyramid = self.act(modules[m_idx](h))
m_idx += 1
pyramid = modules[m_idx](pyramid)
m_idx += 1
elif self.progressive == 'residual':
pyramid = self.act(modules[m_idx](h))
m_idx += 1
pyramid = modules[m_idx](pyramid)
m_idx += 1
else:
raise ValueError(f'{self.progressive} is not a valid name.')
else:
if self.progressive == 'output_skip':
pyramid = self.pyramid_upsample(pyramid)
pyramid_h = self.act(modules[m_idx](h))
m_idx += 1
pyramid_h = modules[m_idx](pyramid_h)
m_idx += 1
pyramid = pyramid + pyramid_h
elif self.progressive == 'residual':
pyramid = modules[m_idx](pyramid)
m_idx += 1
if self.skip_rescale:
pyramid = (pyramid + h) / np.sqrt(2.)
else:
pyramid = pyramid + h
h = pyramid
else:
raise ValueError(f'{self.progressive} is not a valid name')
if i_level != 0:
if self.resblock_type == 'ddpm':
h = modules[m_idx](h)
m_idx += 1
else:
h = modules[m_idx](h, temb)
m_idx += 1
assert not hs
if self.progressive == 'output_skip':
h = pyramid
else:
h = self.act(modules[m_idx](h))
m_idx += 1
h = modules[m_idx](h)
m_idx += 1
assert m_idx == len(modules)
if self.config.model.scale_by_sigma:
used_sigmas = used_sigmas.reshape((x.shape[0], *([1] * len(x.shape[1:]))))
h = h / used_sigmas
return h