-
Notifications
You must be signed in to change notification settings - Fork 19.6k
/
Copy pathcustom_train_step_in_torch.py
492 lines (392 loc) · 16.6 KB
/
custom_train_step_in_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
"""
Title: Customizing what happens in `fit()` with PyTorch
Author: [fchollet](https://twitter.com/fchollet)
Date created: 2023/06/27
Last modified: 2023/06/27
Description: Overriding the training step of the Model class with PyTorch.
Accelerator: GPU
"""
"""
## Introduction
When you're doing supervised learning, you can use `fit()` and everything works
smoothly.
When you need to take control of every little detail, you can write your own training
loop entirely from scratch.
But what if you need a custom training algorithm, but you still want to benefit from
the convenient features of `fit()`, such as callbacks, built-in distribution support,
or step fusing?
A core principle of Keras is **progressive disclosure of complexity**. You should
always be able to get into lower-level workflows in a gradual way. You shouldn't fall
off a cliff if the high-level functionality doesn't exactly match your use case. You
should be able to gain more control over the small details while retaining a
commensurate amount of high-level convenience.
When you need to customize what `fit()` does, you should **override the training step
function of the `Model` class**. This is the function that is called by `fit()` for
every batch of data. You will then be able to call `fit()` as usual -- and it will be
running your own learning algorithm.
Note that this pattern does not prevent you from building models with the Functional
API. You can do this whether you're building `Sequential` models, Functional API
models, or subclassed models.
Let's see how that works.
"""
"""
## Setup
"""
import os
# This guide can only be run with the torch backend.
os.environ["KERAS_BACKEND"] = "torch"
import torch
import keras
from keras import layers
import numpy as np
"""
## A first simple example
Let's start from a simple example:
- We create a new class that subclasses `keras.Model`.
- We just override the method `train_step(self, data)`.
- We return a dictionary mapping metric names (including the loss) to their current
value.
The input argument `data` is what gets passed to fit as training data:
- If you pass NumPy arrays, by calling `fit(x, y, ...)`, then `data` will be the tuple
`(x, y)`
- If you pass a `torch.utils.data.DataLoader` or a `tf.data.Dataset`,
by calling `fit(dataset, ...)`, then `data` will be what gets yielded
by `dataset` at each batch.
In the body of the `train_step()` method, we implement a regular training update,
similar to what you are already familiar with. Importantly, **we compute the loss via
`self.compute_loss()`**, which wraps the loss(es) function(s) that were passed to
`compile()`.
Similarly, we call `metric.update_state(y, y_pred)` on metrics from `self.metrics`,
to update the state of the metrics that were passed in `compile()`,
and we query results from `self.metrics` at the end to retrieve their current value.
"""
class CustomModel(keras.Model):
def train_step(self, data):
# Unpack the data. Its structure depends on your model and
# on what you pass to `fit()`.
x, y = data
# Call torch.nn.Module.zero_grad() to clear the leftover gradients
# for the weights from the previous train step.
self.zero_grad()
# Compute loss
y_pred = self(x, training=True) # Forward pass
loss = self.compute_loss(y=y, y_pred=y_pred)
# Call torch.Tensor.backward() on the loss to compute gradients
# for the weights.
loss.backward()
trainable_weights = [v for v in self.trainable_weights]
gradients = [v.value.grad for v in trainable_weights]
# Update weights
with torch.no_grad():
self.optimizer.apply(gradients, trainable_weights)
# Update metrics (includes the metric that tracks the loss)
for metric in self.metrics:
if metric.name == "loss":
metric.update_state(loss)
else:
metric.update_state(y, y_pred)
# Return a dict mapping metric names to current value
# Note that it will include the loss (tracked in self.metrics).
return {m.name: m.result() for m in self.metrics}
"""
Let's try this out:
"""
# Construct and compile an instance of CustomModel
inputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
model = CustomModel(inputs, outputs)
model.compile(optimizer="adam", loss="mse", metrics=["mae"])
# Just use `fit` as usual
x = np.random.random((1000, 32))
y = np.random.random((1000, 1))
model.fit(x, y, epochs=3)
"""
## Going lower-level
Naturally, you could just skip passing a loss function in `compile()`, and instead do
everything *manually* in `train_step`. Likewise for metrics.
Here's a lower-level example, that only uses `compile()` to configure the optimizer:
- We start by creating `Metric` instances to track our loss and a MAE score (in `__init__()`).
- We implement a custom `train_step()` that updates the state of these metrics
(by calling `update_state()` on them), then query them (via `result()`) to return their current average value,
to be displayed by the progress bar and to be pass to any callback.
- Note that we would need to call `reset_states()` on our metrics between each epoch! Otherwise
calling `result()` would return an average since the start of training, whereas we usually work
with per-epoch averages. Thankfully, the framework can do that for us: just list any metric
you want to reset in the `metrics` property of the model. The model will call `reset_states()`
on any object listed here at the beginning of each `fit()` epoch or at the beginning of a call to
`evaluate()`.
"""
class CustomModel(keras.Model):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.loss_tracker = keras.metrics.Mean(name="loss")
self.mae_metric = keras.metrics.MeanAbsoluteError(name="mae")
self.loss_fn = keras.losses.MeanSquaredError()
def train_step(self, data):
x, y = data
# Call torch.nn.Module.zero_grad() to clear the leftover gradients
# for the weights from the previous train step.
self.zero_grad()
# Compute loss
y_pred = self(x, training=True) # Forward pass
loss = self.loss_fn(y, y_pred)
# Call torch.Tensor.backward() on the loss to compute gradients
# for the weights.
loss.backward()
trainable_weights = [v for v in self.trainable_weights]
gradients = [v.value.grad for v in trainable_weights]
# Update weights
with torch.no_grad():
self.optimizer.apply(gradients, trainable_weights)
# Compute our own metrics
self.loss_tracker.update_state(loss)
self.mae_metric.update_state(y, y_pred)
return {
"loss": self.loss_tracker.result(),
"mae": self.mae_metric.result(),
}
@property
def metrics(self):
# We list our `Metric` objects here so that `reset_states()` can be
# called automatically at the start of each epoch
# or at the start of `evaluate()`.
return [self.loss_tracker, self.mae_metric]
# Construct an instance of CustomModel
inputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
model = CustomModel(inputs, outputs)
# We don't pass a loss or metrics here.
model.compile(optimizer="adam")
# Just use `fit` as usual -- you can use callbacks, etc.
x = np.random.random((1000, 32))
y = np.random.random((1000, 1))
model.fit(x, y, epochs=5)
"""
## Supporting `sample_weight` & `class_weight`
You may have noticed that our first basic example didn't make any mention of sample
weighting. If you want to support the `fit()` arguments `sample_weight` and
`class_weight`, you'd simply do the following:
- Unpack `sample_weight` from the `data` argument
- Pass it to `compute_loss` & `update_state` (of course, you could also just apply
it manually if you don't rely on `compile()` for losses & metrics)
- That's it.
"""
class CustomModel(keras.Model):
def train_step(self, data):
# Unpack the data. Its structure depends on your model and
# on what you pass to `fit()`.
if len(data) == 3:
x, y, sample_weight = data
else:
sample_weight = None
x, y = data
# Call torch.nn.Module.zero_grad() to clear the leftover gradients
# for the weights from the previous train step.
self.zero_grad()
# Compute loss
y_pred = self(x, training=True) # Forward pass
loss = self.compute_loss(
y=y,
y_pred=y_pred,
sample_weight=sample_weight,
)
# Call torch.Tensor.backward() on the loss to compute gradients
# for the weights.
loss.backward()
trainable_weights = [v for v in self.trainable_weights]
gradients = [v.value.grad for v in trainable_weights]
# Update weights
with torch.no_grad():
self.optimizer.apply(gradients, trainable_weights)
# Update metrics (includes the metric that tracks the loss)
for metric in self.metrics:
if metric.name == "loss":
metric.update_state(loss)
else:
metric.update_state(y, y_pred, sample_weight=sample_weight)
# Return a dict mapping metric names to current value
# Note that it will include the loss (tracked in self.metrics).
return {m.name: m.result() for m in self.metrics}
# Construct and compile an instance of CustomModel
inputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
model = CustomModel(inputs, outputs)
model.compile(optimizer="adam", loss="mse", metrics=["mae"])
# You can now use sample_weight argument
x = np.random.random((1000, 32))
y = np.random.random((1000, 1))
sw = np.random.random((1000, 1))
model.fit(x, y, sample_weight=sw, epochs=3)
"""
## Providing your own evaluation step
What if you want to do the same for calls to `model.evaluate()`? Then you would
override `test_step` in exactly the same way. Here's what it looks like:
"""
class CustomModel(keras.Model):
def test_step(self, data):
# Unpack the data
x, y = data
# Compute predictions
y_pred = self(x, training=False)
# Updates the metrics tracking the loss
loss = self.compute_loss(y=y, y_pred=y_pred)
# Update the metrics.
for metric in self.metrics:
if metric.name == "loss":
metric.update_state(loss)
else:
metric.update_state(y, y_pred)
# Return a dict mapping metric names to current value.
# Note that it will include the loss (tracked in self.metrics).
return {m.name: m.result() for m in self.metrics}
# Construct an instance of CustomModel
inputs = keras.Input(shape=(32,))
outputs = keras.layers.Dense(1)(inputs)
model = CustomModel(inputs, outputs)
model.compile(loss="mse", metrics=["mae"])
# Evaluate with our custom test_step
x = np.random.random((1000, 32))
y = np.random.random((1000, 1))
model.evaluate(x, y)
"""
## Wrapping up: an end-to-end GAN example
Let's walk through an end-to-end example that leverages everything you just learned.
Let's consider:
- A generator network meant to generate 28x28x1 images.
- A discriminator network meant to classify 28x28x1 images into two classes ("fake" and
"real").
- One optimizer for each.
- A loss function to train the discriminator.
"""
# Create the discriminator
discriminator = keras.Sequential(
[
keras.Input(shape=(28, 28, 1)),
layers.Conv2D(64, (3, 3), strides=(2, 2), padding="same"),
layers.LeakyReLU(negative_slope=0.2),
layers.Conv2D(128, (3, 3), strides=(2, 2), padding="same"),
layers.LeakyReLU(negative_slope=0.2),
layers.GlobalMaxPooling2D(),
layers.Dense(1),
],
name="discriminator",
)
# Create the generator
latent_dim = 128
generator = keras.Sequential(
[
keras.Input(shape=(latent_dim,)),
# We want to generate 128 coefficients to reshape into a 7x7x128 map
layers.Dense(7 * 7 * 128),
layers.LeakyReLU(negative_slope=0.2),
layers.Reshape((7, 7, 128)),
layers.Conv2DTranspose(128, (4, 4), strides=(2, 2), padding="same"),
layers.LeakyReLU(negative_slope=0.2),
layers.Conv2DTranspose(128, (4, 4), strides=(2, 2), padding="same"),
layers.LeakyReLU(negative_slope=0.2),
layers.Conv2D(1, (7, 7), padding="same", activation="sigmoid"),
],
name="generator",
)
"""
Here's a feature-complete GAN class, overriding `compile()` to use its own signature,
and implementing the entire GAN algorithm in 17 lines in `train_step`:
"""
class GAN(keras.Model):
def __init__(self, discriminator, generator, latent_dim):
super().__init__()
self.discriminator = discriminator
self.generator = generator
self.latent_dim = latent_dim
self.d_loss_tracker = keras.metrics.Mean(name="d_loss")
self.g_loss_tracker = keras.metrics.Mean(name="g_loss")
self.seed_generator = keras.random.SeedGenerator(1337)
self.built = True
@property
def metrics(self):
return [self.d_loss_tracker, self.g_loss_tracker]
def compile(self, d_optimizer, g_optimizer, loss_fn):
super().compile()
self.d_optimizer = d_optimizer
self.g_optimizer = g_optimizer
self.loss_fn = loss_fn
def train_step(self, real_images):
if isinstance(real_images, tuple):
real_images = real_images[0]
# Sample random points in the latent space
batch_size = real_images.shape[0]
random_latent_vectors = keras.random.normal(
shape=(batch_size, self.latent_dim), seed=self.seed_generator
)
# Decode them to fake images
generated_images = self.generator(random_latent_vectors)
# Combine them with real images
real_images = torch.tensor(real_images)
combined_images = torch.concat([generated_images, real_images], axis=0)
# Assemble labels discriminating real from fake images
labels = torch.concat(
[torch.ones((batch_size, 1)), torch.zeros((batch_size, 1))], axis=0
)
# Add random noise to the labels - important trick!
labels += 0.05 * keras.random.uniform(
labels.shape, seed=self.seed_generator
)
# Train the discriminator
self.zero_grad()
predictions = self.discriminator(combined_images)
d_loss = self.loss_fn(labels, predictions)
d_loss.backward()
grads = [v.value.grad for v in self.discriminator.trainable_weights]
with torch.no_grad():
self.d_optimizer.apply(grads, self.discriminator.trainable_weights)
# Sample random points in the latent space
random_latent_vectors = keras.random.normal(
shape=(batch_size, self.latent_dim), seed=self.seed_generator
)
# Assemble labels that say "all real images"
misleading_labels = torch.zeros((batch_size, 1))
# Train the generator (note that we should *not* update the weights
# of the discriminator)!
self.zero_grad()
predictions = self.discriminator(self.generator(random_latent_vectors))
g_loss = self.loss_fn(misleading_labels, predictions)
grads = g_loss.backward()
grads = [v.value.grad for v in self.generator.trainable_weights]
with torch.no_grad():
self.g_optimizer.apply(grads, self.generator.trainable_weights)
# Update metrics and return their value.
self.d_loss_tracker.update_state(d_loss)
self.g_loss_tracker.update_state(g_loss)
return {
"d_loss": self.d_loss_tracker.result(),
"g_loss": self.g_loss_tracker.result(),
}
"""
Let's test-drive it:
"""
# Prepare the dataset. We use both the training & test MNIST digits.
batch_size = 64
(x_train, _), (x_test, _) = keras.datasets.mnist.load_data()
all_digits = np.concatenate([x_train, x_test])
all_digits = all_digits.astype("float32") / 255.0
all_digits = np.reshape(all_digits, (-1, 28, 28, 1))
# Create a TensorDataset
dataset = torch.utils.data.TensorDataset(
torch.from_numpy(all_digits), torch.from_numpy(all_digits)
)
# Create a DataLoader
dataloader = torch.utils.data.DataLoader(
dataset, batch_size=batch_size, shuffle=True
)
gan = GAN(
discriminator=discriminator, generator=generator, latent_dim=latent_dim
)
gan.compile(
d_optimizer=keras.optimizers.Adam(learning_rate=0.0003),
g_optimizer=keras.optimizers.Adam(learning_rate=0.0003),
loss_fn=keras.losses.BinaryCrossentropy(from_logits=True),
)
gan.fit(dataloader, epochs=1)
"""
The ideas behind deep learning are simple, so why should their implementation be painful?
"""