forked from openbigdatagroup/plda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinfer.cc
100 lines (96 loc) · 3.41 KB
/
infer.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
// Copyright 2008 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
/*
An example running of this program:
./infer \
--alpha 0.1 \
--beta 0.01 \
--inference_data_file ./testdata/test_data.txt \
--inference_result_file /tmp/inference_result.txt \
--model_file /tmp/lda_model.txt \
--burn_in_iterations 10 \
--total_iterations 15
*/
#include <fstream>
#include <set>
#include <sstream>
#include <string>
#include "common.h"
#include "document.h"
#include "model.h"
#include "sampler.h"
#include "cmd_flags.h"
int main(int argc, char** argv) {
using learning_lda::LDACorpus;
using learning_lda::LDAModel;
using learning_lda::LDAAccumulativeModel;
using learning_lda::LDASampler;
using learning_lda::LDADocument;
using learning_lda::LDACmdLineFlags;
using learning_lda::DocumentWordTopicsPB;
using learning_lda::RandInt;
using std::ifstream;
using std::ofstream;
using std::istringstream;
LDACmdLineFlags flags;
flags.ParseCmdFlags(argc, argv);
if (!flags.CheckInferringValidity()) {
return -1;
}
srand(time(NULL));
LDAModel model(0);
ifstream model_fin(flags.model_file_.c_str());
model.Load(model_fin);
LDASampler sampler(flags.alpha_, flags.beta_, &model, NULL);
ifstream fin(flags.inference_data_file_.c_str());
ofstream out(flags.inference_result_file_.c_str());
string line;
while (getline(fin, line)) { // Each line is a training document.
if (line.size() > 0 && // Skip empty lines.
line[0] != '\r' && // Skip empty lines.
line[0] != '\n' && // Skip empty lines.
line[0] != '#') { // Skip comment lines.
istringstream ss(line);
DocumentWordTopicsPB document_topics;
string word;
int count;
while (ss >> word >> count) { // Load and init a document.
vector<int32> topics;
for (int i = 0; i < count; ++i) {
topics.push_back(RandInt(model.num_topics()));
}
if (model.IsWordInVocabulary(word)) {
document_topics.add_wordtopics(word, topics);
}
}
LDADocument document(document_topics, model.num_topics());
TopicProbDistribution prob_dist(model.num_topics(), 0);
for (int iter = 0; iter < flags.total_iterations_; ++iter) {
sampler.SampleNewTopicsForDocument(&document, false);
if (iter >= flags.burn_in_iterations_) {
const TopicCountDistribution& document_distribution =
document.topic_distribution();
for (int i = 0; i < document_distribution.size(); ++i) {
prob_dist[i] += document_distribution[i];
}
}
}
for (int topic = 0; topic < prob_dist.size(); ++topic) {
out << prob_dist[topic] /
(flags.total_iterations_ - flags.burn_in_iterations_)
<< ((topic < prob_dist.size() - 1) ? " " : "\n");
}
}
}
}